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Summary
This report investigates how recurrent neural networks can be applied to the task of speaker
independent phoneme recognition. Several recurrent neural network architectures found in
literature are listed and categorized. A general modular description method is used to describe
all the architectures found. The state-space neural network architecture and the Fully Recurrent
Neural Network (FRNN) are investigated in more detail.

Training algorithms for recurrent neural networks are investigated and derived, especially the
Backpropagation Through Time (BPTT) and Real-time Recurrent Learning (RTRL) algorithms.
BPTT is found to be most suited for a phoneme recognition task. The state-space neural network
together with training algorithms is implemented as a Matlab toolbox.

Some properties of recurrent neural networks are investigated, especially their ability to
perform classification of sequences of data.

Several neural network methods are used on an artificial phoneme classification task. Mel-
cepstrum feature extraction is used to preprocess the artificial phoneme sounds. In the
subsequent classification the recurrent networks are found to outperform the non-recurrent
architectures. A preliminary experiment on real speech signals is performed.
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CHAPTER 1 INTRODUCTION

The standard feedforward neural network, or multilayer perceptron (MLP), is the best known
member of the ‘family’ of many types of neural networks. Feedforward neural networks have
been applied in tasks of prediction and classification of data for many years.

More recently a new class of neural networks, based upon feedforward neural networks, was
introduced. These dynamic neural networks, or neural networks for temporal processing extend
the feedforward networks with the capability of dynamic operation, which means that the neural
network behavior depends not only on the current input (as in feedforward networks) but also
on previous operations of the network.

Neural networks for temporal processing can be grouped in two classes. The first class, which
is called time-delay networks here, is based on feedforward neural networks that have certain
structures of delay elements added. These structures perform some temporal pre-processing of
the input data before the data is presented to neurons in the network. The second class consists
of recurrent neural networks, which have recurrent connections (neuron outputs are fed back
into the network as additional inputs) as well as the structures of delay elements seen in time-
delay networks. Time-delay networks do not have any recurrent connections.

This division in two classes, essentially non-recurrent and recurrent dynamic networks, is
analogous to the division of discrete-time (sampled) filter networks in finite impulse response
(FIR) and infinite impulse response (IIR) filters. FIR filters do not have recurrent connections
and IIR filters always have recurrent connections.

1.1  Recurrent neural networks

Recurrent Neural Networks (RNN) are nonlinear or linear dynamic systems. They can be
simulated in software on computers or implemented in hardware (analog or digital). A first
property that can be used to distinguish RNN in two distinct groups is the representation of time
in the system. We have:

- continuous-time systems
- discrete-time systems

A second property is the representation of signals in the system. The signals can be
- real-valued
- quantized

A system can be real-valued if implemented in analog hardware. All digital implementations use
quantized values since values are stored in a finite number of bits. However, a digital
implementation is often analyzed as if it were real-valued in case that the error introduced by the
quantization is too small to be noticed (for example when floating point numbers are used).

The above properties of the system do not say much about the intended application of the
RNN. All possible applications of RNN can be grouped into two broad categories. Recurrent
neural networks can be used as

- associative memories
- sequence mapping systems

5HFXUUHQW�QHXUDO�QHWZRUNV�XVHG�DV�VHTXHQFH�PDSSLQJ�V\VWHPV
Recurrent neural networks used as sequence mapping systems are operated by supplying an
input sequence, which consists of different input patterns at each time step (in case of a discrete-
time system), or a time-varying input pattern over time (in case of a continuous-time system).
At each time instant, an output is generated which depends on previous activity of the system
and on the current input pattern. The entire output sequence generated over time is considered
the result of the computation.
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The class of sequence mapping systems is interesting for practical applications in sequence
recognition, generation or prediction and it will be examined in the next chapter. Sequence
mapping neural networks are nearly always implemented in software or clocked digital
hardware (both have a discrete representation of time).

This report will focus on recurrent neural networks used as sequence mapping systems. Using
the common ways of implementation these networks are discrete-time systems. Therefore, all
treatment of recurrent neural networks in the next chapters will be restricted to discrete-time
systems. Some examples of recurrent neural networks used as associative memories will be
given now.
5HFXUUHQW�QHXUDO�QHWZRUNV�XVHG�DV�DVVRFLDWLYH�PHPRULHV
Recurrent neural networks used as associative memories are operated by applying a fixed input
pattern (that does not change over time). Then the network is operated according to a set of
equations describing the network dynamics. Internal signals and the network outputs will
change over time. Under certain conditions (and waiting for a sufficient time interval), the
network ‘settles’. This means the system’s output has converged to some static pattern which is
considered the result of the computation performed by the system. This result is some
association made by the system in response to the input, hence the name associative memories.

The difference with sequence mapping systems lies in supplying a static input to the network
(not a sequence) and only using the final output values of the network as a result (and not the
output sequence over time). So both input and output are static patterns whereas for the
sequence mapping systems, both input and output are sequences.

These recurrent neural network architectures were proposed to create associative content-
addressable memories. They were used in Artificial Intelligence research and they contributed
to research about the way the (human) brain works. Associative memories are sometimes
implemented in analog hardware, but generally for research purposes a software implementation
is favored because it is more convenient and flexible.

Examples of these architectures are the Brain-State-in-a-Box neural network and the Hopfield
network. The Hopfield network model was later on extended with neurons that operate in a
stochastic manner (using theory from the field of statistical mechanics) which are called
Boltzmann machines [Hertz e.a., 1991].

See [Patterson, 1996] for a short introduction to all the network architectures mentioned.

1.2  Applications of discrete-time recurrent neural networks

Sequence mapping recurrent neural networks can be used in a number of different ways. The
most common uses or task types are:

1) modeling the input-output behavior of a dynamic system: In this case the network is
trained with known examples of input-output behavior of a ‘black-box’ dynamic system.
The trained network is then used to predict dynamic system output, given an input
sequence.

2) time-series prediction: In this case the network is trained with an output data sequence of
some ‘black-box’ process. The trained network is then used to predict the future
(unknown) process outputs, given a sequence of process outputs up to the current time.

3) sequence classification: The network is trained with a data sequence that belongs to one
class wi out of N possible classes. The target value for the network is a coded
representation of the class wi. Then, the network can be used to assign a classification to a
new data sequence.

4) feature extraction: The network is trained with a sequence of raw data vectors as input
and a smaller feature sequence as a target. The network can learn to transform the ‘low-
level’ raw data vectors into ‘higher-level’ features. These features can then be used as
input to any subsequent classification procedure.
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5) modeling a finite state machine: The network is trained with example sequences of input
and output of a ‘black box’ finite state machine. The trained network is used to identify
the state machine or predict its output, given an input sequence.

Most attention will be given to task 3 with the application to speech recognition (classification)
in mind. Task 1 is briefly encountered in demonstrating training algorithms in the next chapter.
Task 2 is mentioned in chapter 4 as an alternative approach to classification.

In principle, all recurrent neural networks treated in this chapter can be applied to all task
types.
&ODVVLILFDWLRQ�WDVNV�DQG�UHJUHVVLRQ�WDVNV
The specific task can be divided in one of two global classes [Bishop, 1995] [Bengio, 1996]. In
a classification task (task 3) a neural network has to assign new input data to one out of N
discrete classes. Therefore the output of this neural network is in some way converted to a
discrete output. In the tasks 1,2 and 4, the neural network continuous-valued outputs are directly
used. These tasks are often referred to as regression tasks.

Task 5 can not always be categorized this way because it isn’t classification and does not have
to be regression, because often the neural network outputs are eventually discretized in Finite
State Machine modeling.

1.3  Aim

The aim of this assignment is to make an inventarisation and analysis of recurrent neural
networks, with an application to speaker independent phoneme recognition in mind.
More specifically:
1. Investigate recurrent neural network architectures and training algorithms ;
2. Investigate (both analytically and experimentally) how recurrent neural networks can be

applied to classification of time-series of data, especially series of speech features ;
3. Look at existing neural network methods for phoneme recognition ;
4. Investigate how recurrent neural networks can be used for speaker independent phoneme

recognition.

The reason that recurrent neural networks are investigated, is that these dynamic structures
might be able to perform phoneme recognition in a better way than static neural networks. Some
phoneme sounds have a dynamically changing frequency content over time (see [Janssen,
1998]). This suggests that a dynamic neural network, that can learn to identify the typical
dynamic frequency pattern of a phoneme, can perform better recognition of a phoneme than a
static neural network. A static network can only use the current information X(n) at a certain
time n to make a classification. So the dynamic relation between different pieces of informationX(.) at different moments in time can not be learned by a static network.
6WUXFWXUH�RI�WKLV�UHSRUW
The structure of this report is given here.
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- Chapter 2 introduces several recurrent neural network architectures. These are grouped
into three categories.

- Chapter 3 gives algorithms that can train these networks. The two basic training
approaches Backpropagation Through Time and Real-time Recurrent Learning are
investigated.

- Chapter 4 lists properties of recurrent networks and shows how recurrent networks can be
used for classification of data sequences.

- Chapter 5 describes the experiments that were done with recurrent neural networks in a
classification task. Several neural network structures are compared.

- Chapter 6 gives final conclusions and recommendations.
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CHAPTER 2 RECURRENT NEURAL NETWORK ARCHITECTURES

2.1  Introduction

In this chapter, a number of Recurrent Neural Network (RNN) architectures are discussed. The
discussion will be restricted to discrete-time systems, as pointed out in chapter 1. Training
algorithms for these architectures, that can train the networks (using examples) so that they will
compute a certain useful function of the input data, are discussed in the next chapter.

All architectures are based on the structure of standard feed-forward neural networks.
Neurons, layers of neurons, or entire parts of multilayer perceptrons can be found in discrete-
time RNN combined with some temporal processing (using time-delay elements) of data and
recurrent connections (also called feedback connections).
$LP
This chapter presents the different recurrent neural network architectures, encountered in
literature during this project. It aims to categorize the architectures which may facilitate the
choice of an architecture at a later stage.
2YHUYLHZ�RI�WKLV�FKDSWHU
In the first three sections, a number of discrete-time RNN architectures are presented. The
architectures are discussed from two dynamic systems viewpoints: the state-space model (in
section 2.2) and the input-output model (in section 2.3). The last section (2.4) presents modular
architectures that are best described in yet another way.

The architectures treated in this chapter can be ordered hierarchically since some architectures
are special cases of more general architectures. This hierarchy is visualized in figure 2.1. The
numbers in brackets refer to the corresponding sections in this chapter.

The most general architectures are at the left, specific architectures are at the right. The
accolades show what architectures are part of a more general architecture description.
5HFXUUHQW�QHXUDO�QHWZRUNV�ZLWK�FRQWLQXRXV��RU�TXDQWL]HG�YDOXHV
All analysis of neural networks in this chapter is done under the assumption of continuous
internal signal values (i.e. real numbers).

2.2  Architectures based on the State-space model

This section presents a number of classes of RNN architectures. All architectures can be best
described using the state-space model from systems theory. This state-space model will be
introduced in subsection 2.2.1. After that, the following architectures or classes of architectures
are presented:

- Fully Recurrent Neural networks (FRNN); subsection 2.2.2
- Subsets of FRNN: Recurrent Neural Networks (RNN); subsection 2.2.3
- Partially Recurrent Networks (PRN); subsection 2.2.4
- Simple Recurrent Networks (SRN); subsection 2.2.5

These architectures emerge by applying constraints to the general state-space model. The
architectures have been investigated and tested in applications by many researchers. In the
following subsections, these specific constraints will be listed and the resulting architectures
will be discussed. Each class is presented together with a quick look at some properties and
examples of their application.
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*HQHUDO 6SHFLILF
Simple
Recurrent
networks (SRN)
(2.2.5)

state-space
network model
(2.2)

single-module
recurrent network
(2.4.3)

multilayer
FRNN (2.4.3)

Fully Recurrent
neural network
(FRNN) (2.2.2)

Partially
recurrent
network (PRN)
(2.2.3)

Subsets of
FRNN (2.2.3) ;
e.g. multilayer
RNN

input-output
network model
(2.3)

modular
network
framework
(2.4.3)

Recurrent
multilayer
perceptron
(RMLP) (2.4.1)

Modular Simple
Recurrent
Networks (SRN)
(2.4.3)

Block Feedback
Networks (BFN)
(2.4.2)

Figure 2.1; Recurrent neural network architectures hierarchy (numbers indicate sections)

�������*HQHUDO�VWDWH�VSDFH�PRGHO
The first general state-space model will be presented first. After this model, is the second
general state-space model is introduced. The second model is actually a special case of the first
model, so it is less general but it is still important enough to be presented as a separate model.

Because the first model is the most general, it is also referred to as the general state-space
model in this report.
7KH�ILUVW�JHQHUDO�VWDWH�VSDFH�PRGHO
In systems theory, a general model to describe a discrete-time nonlinear system is a nonlinear
state-space model. The system-input vector at time n is X(n), the output vector is \(n) and the
state of the system is [(n). The general state-space model is given by:
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))(),(()(
))(),(()1(

nnn
nnn

X[*\
X[)[

=
=+

(2.1 a,b)

The following (loose) definition describes what the state is: The state of a system summarizes
the past of the system insofar as relevant for its future behavior [Kwakernaak e.a., 1991].

It is generally assumed that any discrete-time dynamic system can be described by a suitable
state-space model. From this it follows that all discrete-time RNN architectures can be described
by a suitable state-space model.

But the state-space model does not have to be the default choice for describing a discrete-time
system. Network architectures that are better described in another way are treated in section 2.3
on the input-output model and in section 2.4 on modular architectures.

In this section, neural network architectures are presented that can be best described using a
state-space model. The (non)linear vector functions )(.) and *(.) are replaced by more specific
functions, realized by neural networks. Each of these functions can of course also be realized by
a group of several neural networks, in other words a modular neural network.

A general state-space neural network architecture realizing the equations 2.1 is shown in
figure 2.2a.
D� E�

Figure 2.2; First (a) and second (b) state-space neural network architectures with neural
networks realizing F(.) and G(.)

7KH�VHFRQG�JHQHUDO�VWDWH�VSDFH�PRGHO
In the second general state-space model the system output is a function *(.) of the current state
only. It is therefore a special case of the first general state-space model. It is given by:

))(()(
))(),(()1(

nn
nnn

[*\
X[)[

=
=+

(2.2)

Some RNN architectures can be best described using this second model. A general state-space
neural network architecture realizing the equations 2.2 is shown in figure 2.2b.
Control theory assumption
The limitation that the output is a function of the current state [(n) only, is a result of the
common control theory assumption, that the output of a (continuous) dynamic system to be
controlled or identified by the neural network cannot react instantaneously on the applied input
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(for example assumed in [Wentink, 1996] or [Santini, 1995a]). Then the second state-space
model adequately describes the dynamic system and the first state-space model is not used.
A modification to the second state-space model
Sometimes a modification to the second state-space model is made. In this model the output of
the function F (the next state) is fed to function G directly without passing through a delay
element:

))1(()('
))(),(()1(

+=
=+

nn
nnn

[*\
X[)[

(2.3)

Obviously the dynamic properties of this model are the same as the equations 2.2 because the
process equation is identical. The output sequence however is advanced by one time step, \�(n)
= \(n+1).
3URSHUWLHV�RI�WKH�JHQHUDO�VWDWH�VSDFH�PRGHOV
The task of training this network to realize the correct function )(.) poses a special problem,
because target values for the output of )(.) given the input are not known in most cases, since
only the desired input-output behavior is known. This problem, that can be solved by error
backpropagation algorithms, is examined in chapter 3 on training algorithms.

The first state-space network model can be viewed as a static neural network * extended  with
an ) module that allows for dynamic operation.
Approximation of dynamic systems
As will be shown in section 4.1, the general state-space neural network architecture is capable
of approximating any dynamic system.
'HVFULSWLRQ�XVLQJ�OD\HUV
The functions F and G as used in this subsection are yet unspecified. However, static networks
normally have a layered architecture (as can be found in textbooks on neural networks). Each
layer computes a function of the output of the previous layer. A general layered architecture
with i layers is described by the following equations:

����X�[�*�**�*�X*�[\
����X�[�)�))�)�X)�[[

//�//L

//�//L

...)(),(...)(),()(
...)(),(...)(),()1(

��

��

nnnnn
nnnnn

==
==+

(2.4)

where the functions )Lj , *Lj denote the computations performed by layer j of the F and G
network respectively. The layered description is defined here because it will be used later in
introducing the state-space SRN (subsection 2.2.5).
$SSOLFDWLRQV
In most applications the state-space neural network architectures as presented here, are not used.
In system identification and control applications, the unknown target values for module ) are
the main reason to dismiss a general state-space neural network. See subsection 4.1.7 for a
further discussion.

Other applications like classification are generally not viewed from a system theory viewpoint
so the general state-space neural network is not used, but the ‘subsets’ of the state-space
network (to be treated in the remainder of this section) are used.

�������)XOO\�5HFXUUHQW�1HXUDO�1HWZRUN��)511�
The Fully Recurrent Neural Network (FRNN) is first described here in terms of individual
neurons and their connections, as was done in [Williams e.a., 1989]. Then the FRNN is
considered as a special case of the general state-space model and a convenient matrix notation
of the network is given.

The name ‘Fully Recurrent Neural Network’ for this network type is proposed by [Kasper e.a.,
1994]. Another name for this type of network is the ‘Real-Time Recurrent Network’. This name
will not be used further, because the name strongly implies that training is accomplished using
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the Real-Time Recurrent Learning (RTRL) algorithm proposed for this network in [Williams
e.a., 1989] which is not necessarily the case because other algorithms can be used.

In general a FRNN has N neurons, M external inputs and L external outputs. In figure 2.3 an
example of a FRNN is given which has N=4 neurons, M=2 external inputs u 1(n), u2(n) and L=2
external outputs y1(n), y2(n).

The network is called Fully Recurrent because the output of all neurons are recurrently
connected (through N delay elements and N2 weighted feedback connections) to all neurons in
the network. The external network inputs are connected to the neurons by N*M feedforward
connections without delay element. A bias (also called threshold) can be introduced for every
neuron by applying a constant external input u1(n) = 1 to the network.

Figure 2.3; Example of a Fully Recurrent Neural Network (of type 1)

7KH�GHILQLWLRQ�RI�OD\HUV
For static neural networks, the number of layers in the neural network can be clearly defined as
the number of neurons an input signal passes through before reaching the output. For the FRNN
however the same definition is ambiguous, because signals applied at time n are fed back and
reach the output at times n, n+1, and so on. The term layer therefore appears to be never used in
literature in FRNN descriptions.

By redefining the concept of layer to: the minimum number of neurons an input signal passes
through before reaching the output, a workable definition is obtained for the FRNN. Also this
definition can be equally well used for subsets of the FRNN that will be described later on in
section 2.2. It also makes much sense in describing the single module recurrent network
(subsection 2.4.3).  Now the network can be seen as a single layer feed-forward network,
extended with delayed recurrent connections.

If the layer definition is not used, the (N-L) hidden neurons numbered n > L can also be seen
as a hidden layer because these are not connected as an external network output.
7ZR�W\SHV�RI�)511
The network as shown, having delay-less inputs, will be referred to as a type 1 FRNN. Often a
slightly different FRNN appears in literature (e.g. [Haykin, 1994] and [Williams e.a., 1995])
that uses delayed input values instead. This type of network will be referred to as a type 2
FRNN. Both types will be introduced first. At the end of this subsection it will be shown that the
two types have exactly the same dynamic behavior, so the use of either type in an application is
an arbitrary choice.
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1HWZRUN�G\QDPLFV�IRU�WKH�W\SH���)511
Define the external input vector X(n) that holds the inputs ui(n) applied at time n. The neuron
outputs yi(n) are elements of the combined output/state vector \(n). To describe the network
dynamics, the external input X(n) and the delayed output/state \(n-1) are first grouped together
to form the (N+M)-by-1 extended input vector ](n):

ßà
ÞÏÐ

Î -=
)(

)1(
)(

n
n

n X
\] (2.5)

The following equations describe the network dynamics. First the extended inputs are
multiplied by weights w ij and summed up to the sums s i(n). The network outputs are computed
by passing the sums through the neuron activation function f(.).
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)()(
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nzwns
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M
MLML

=
¼= Ê

(2.6 a,b)

1HWZRUN�G\QDPLFV�IRU�WKH�W\SH���)511
The network with delayed external inputs has slightly different dynamic behavior. As can be
seen in figure 2.4a and equation 2.7a below, the input is now delayed.

Figure 2.4; A type 2 FRNN presented in two different ways: a) with delayed external
inputs ; b) with delayed neuron outputs
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The network extended input ]*(n) consists of the delayed vectors \(n-1) and X(n-1). These
delays can be seen in figure 2.4a on both \(.) and X(.) This notation is not found in literature,
probably because the definition of the extended input vector ](n) is a bit confusing: the time
index n is shifted. So the extended input vector is commonly defined as

ßà
ÞÏÐ
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n
n

n X
\] (2.8)

leading to the following equations for the network dynamics, which are equivalent to the
equations 2.7:
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(2.9 a,b,c)

The delays have been moved from the inputs to the output of every neuron (the delay is now
present in equation 2.9c). The resulting network structure is shown in figure 2.4b. The two
networks in figure 2.4a,b are equivalent in input-output behavior, but the intermediate summing
expression for si(n) is not equal to si

*(n) defined in equation 2.7b, but rather si(n) = si
*(n+1).

6WDWH�VSDFH�PRGHO�DQG�PDWUL[�QRWDWLRQ�RI�WKH�W\SH���QHWZRUN
A state-space description of the type 1 FRNN will be derived. To obtain the state-space model,
the equations 2.6 for the network dynamics are converted to a matrix notation. Define the N-by-
N weight matrix :x containing all recurrent weights and the N-by-M weight matrix : u
containing all external input weights:
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and the total network weight matrix : containing all the weights:[ ]X[ ::: = (2.11)

Let the diagonal mapping )(.) (also referred to as the vector function )(.) ) denote all neuron
activation functions �:
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The network dynamics of equation 2.6 can now be written in an equivalent matrix notation:

�X:\)�:�])�:\ )()1()()( nnnn X[ ¼+-¼=¼= (2.13)
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The equation above can be rewritten to show more clearly it is a special case of the general
form of a state-space system (equations 2.1). For this purpose the following vectors of the state-
space system S are defined: the state vector [S(n), the input vector XS(n), the output vector \S(n)
and the vector functions )S(.) and *S(.). If we define these vectors as:

[ ])(...)()()(
)1()(

)()(

�� nynynyn
nn
nn

/=
-=

=

6

6

6

\
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(2.14)

the network can be written as a state-space model S:

�X:[)�:&�X�[*\
�X:[)�:�X�[)[

6X6[6666
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)()()(),()(
)()()(),()1(

nnnnn
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(2.15 a,b)

In these equations, matrix & is the L-by-N matrix[ ]/1/�/ �,& -/= (2.16)

where ,L is the L-by-L unity matrix and �L;N-L the L-by-(N-L) zero matrix. As a result of this
definition of &, the output vector \S(n) consists of the first L elements of the output/state-vector\(n). The state-space model S conforms to the first general form of the state-space model
presented in the previous section.

Note that the function )S appears ‘duplicated’ inside the function *S:

)1()(),()(
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(2.17)

so one could say the output is simple a function of the next state.
In figure 2.5 the example type 1 FRNN is again shown. All variables in the network are now

shown in the state-space notation introduced above.

Figure 2.5; The type 1 example FRNN with all variables shown in state-space notation

6WDWH�VSDFH�PRGHO�DQG�PDWUL[�QRWDWLRQ�RI�WKH�W\SH���QHWZRUN
The type 2 network can be written as a new state-space system T if the following variables are
defined:
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The different definition of the state [T results from the delay in the neuron outputs (see
equation 2.9c). This gives the following state-space system:

)()()(
)()()(),()1(

nnn
nnnnn
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¼==
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(2.19)

In this case the output only depends on the current state vector [T(n). So the state-space model
T conforms to the second form of general state-space model. In figure 2.6 the example type 2
FRNN from figure 2.4b is shown again. All variables in the network are now shown in the state-
space notation introduced above.

Figure 2.6; The type 2 example FRNN with all variables shown in state-space notation

&RPSDULVRQ�RI�WKH�WZR�W\SHV�RI�)511
The difference between the two types is illustrated in figure 2.7, where the computation of the
two types of FRNN models in matrix notation is shown schematically. Both types have an
identical dynamic behavior because the input and feedback structure of both models is exactly
the same.

The only difference is in the output computation. In the type 1 FRNN, [S(n+1) before the
delay is used for this and in the type 2 FRNN, [T(n) after the delay is used. For the outputs of
both networks, this results in the relation \T(n+1) = \S(n) which means the output of the type 2
FRNN is the same as the output of the type 1 FRNN, but delayed by one time step.

It can therefore be concluded that the choice between the two types is arbitrary because the
output of the selected type can always be transformed (shifted in time by one time step) such
that the output of the other type is obtained. Both types are encountered in literature on FRNN.
$SSOLFDWLRQV�RI�WKH�)511
Identification and simulation of nonlinear systems
A FRNN can be used to identify or simulate a nonlinear dynamic system. It is shown in section
4.1 however, that a FRNN can not simulate all state-space systems.
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Figure 2.7; FRNN computation shown in ‘matrix notation’;  a) type 1 network
; b) type 2 network

Identification and simulation of linear systems
Using linear neuron transfer functions, the FRNN can be used to identify or simulate a linear
state-space system. An example is not given here, because an example of linear state system
simulation by the partially recurrent neural network will be given in subsection 2.2.3.
Speech recognition
FRNN were applied to speech recognition problems. See for example [Kasper e.a., 1994] and
[Robinson, 1994].
Learning the behavior of Finite State Machines
FRNN can learn to behave like a Finite State Machine (FSM) by presenting examples of the
output of the FSM to be identified. See also [Giles e.a., 1994] where a method is given to
convert a representation of the FSM learned by the (continuous-valued) FRNN back to a
discrete-valued representation.

�������6XEVHWV�RI�WKH�)511��5HFXUUHQW�1HXUDO�1HWZRUNV��511�
Additional restrictions can be imposed on the FRNN architecture described in the previous
subsection to create other (restricted) Recurrent Neural Network (RNN) architectures. This
subsection will describe some of these restricted architectures. Because the FRNN can be
written as a state-space model, all ‘subsets’ of FRNN are in many cases most conveniently
written as state-space models.

The following categories of restrictions can be used (individually or in a combination):
1) forcing certain weights to zero (called removing or pruning the weight)
2) forcing weights to non-zero value (called fixing the weight or making the weight

non-learnable)
3) forcing weights to be equal to other weights (called sharing of weights) or

approximately equal to other weights (called soft sharing of weights)
These restrictions will be looked at in this subsection. Note that the three restrictions listed are

fairly general and can be applied to other neural networks architecture than the FRNN, for
example to the standard feedforward network.

All three restrictions have a property in common: the number of free parameters of the
network is reduced when compared to a non-modified FRNN. Reasons for doing so will be
given now. More reasons for applying restrictions will be given in the category descriptions.
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5HGXFWLRQ�RI�WKH�QXPEHU�RI�IUHH�SDUDPHWHUV
The training of a neural network is in fact a procedure that tries to estimate the parameters
(weights) of the network such that an error measure is minimized. Reducing the number of
parameters to be estimated may simplify training.

Another good reason for reducing the number of free parameters is to reduce training
algorithm overhead, which often grows quickly for an increasing number of weights NW. (Some
analysis of computational overhead will be done in subsections 3.3.5 and 3.4.3.)
�� )RUFLQJ�ZHLJKWV�WR�]HUR��SUXQLQJ�
Different RNN architectures can be created by removing connections from the FRNN. An
example of a RNN that is not fully recurrent anymore is shown in figure 2.8a. This structure
looks quite different from the FRNN architecture. However, it must be noted that all
connections have a time-delay of 1, even the feed-forward connections between neurons. These
delay elements are shown in the figure. All RNN structures having this property are in fact
subsets of the FRNN and can be written in the default form, as is shown in figure 2.8b. In the
figure the connections that are removed (pruned) from the general FRNN architecture are shown
as dashed lines (so these connections are not actually present anymore).

Figure 2.8; One example RNN presented as (a) a two-layer neural network with delays and
recurrent connections ; and (b) as a FRNN with four removed connections

Specific reasons for pruning connections are:
- weights can be pruned to make the network computation and training algorithm

computation more local in space. An architecture with for example only self-recurrent
connections can be implemented efficiently on parallel computing devices

- less connections often simplify and therefore speed up the training algorithm used for the
network

Sparse network
The term sparse network is used for a large network that has most connections pruned. Sparse
networks try to combine the advantages of many neurons with the advantages of a relatively
small number of weights. The Simple Recurrent Networks (SRN) in subsection 2.2.5 are sparse
networks, for example.
Properties: Effective number of layers
The FRNN was called a one layer network, using the new layer definition in subsection 2.2.2.
However, the RNN in figure 2.8a (and b) is now called a two layer network. In making this
statement the new layer definition is used again.

One notable difference between this example RNN and any standard two-layer MLP is that the
RNN has delay between external inputs and external outputs. In the example, the minimum
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delay of an input signal to the output is D=1 time step. A consequence of this inherent delay D
is that the training target for this RNN should also be delayed such, that a training example input[(n) at time n has no relation with the target 7(m) that has to be learned, for all time m < n+D,
simply because [(n) can’t have any influence on the output for such a time m.

It should be noted that any effective number of layers can be created this way, by taking a
large enough FRNN and pruning specific connections. For an example of a three-layer structure
see [Koizumi e.a., 1996].
Applications to speech recognition
Many types of constrained RNN have been used in speech recognition (for example [Bengio,
1996] and [Koizumi e.a., 1996]). In their experiments, specific architectures were pre-selected
and their performance was tested. In [Kasper e.a., 1994] it was argued that these kind of
restrictions often seem arbitrarily chosen and may limit the network performance in an
application. Kasper therefore used a FRNN (with no restrictions) for a speech recognition task.
The partially recurrent network
By pruning weights a well-known architecture, the partially recurrent network, is obtained. This
network type will be discussed separately in subsection 2.2.4.
�� )RUFLQJ�ZHLJKWV�WR�QRQ�]HUR�FRQVWDQW�YDOXHV��IL[LQJ�
Some reasons for forcing weights to constant values, or fixing weights, are:

- A-priori knowledge about the problem can be coded into the network using fixed weights.
This knowledge can’t be ‘unlearned’ by the training algorithm in a direct way because the
fixed connections can’t be changed in the training process.

- Fixing certain weights can simplify or speed-up the training algorithm. But any neuron
having a fixed connection can still use the information, that comes in through the fixed
connection, in its computation. Some Simple Recurrent Networks (SRN) architectures
also make use of fixed weights for this reason (see subsection 2.2.5).

An example of a network class using fixed connections is the K-L network [Frasconi e.a.,
1995]. It contains a ‘K’ (knowledge) sub-network in which fixed connections are used to code
a-priori knowledge, and an ‘L’ (learnable) sub-network that is trained to ‘fine-tune’ the rather
coarse a-priori information. Some experiments on speech recognition were done [Frasconi e.a.,
1995] with the K-L network. The total network is made up of two FRNN (the K and the L
network) and a feedforward network that combines the output of both.
�� 6KDULQJ�ZHLJKWV
Sharing weights (setting weights to be always equal to other weights) reduces the number of
free parameters like pruning and fixing. Shared weights are still learnable, unlike fixed weights.
In [Bengio, 1996] and [Bishop, 1995]  weight sharing is further discussed and soft weight
sharing (weights are approximately equal to other weights) is introduced.

In fact, a FRNN can in many cases be considered a large static feedforward neural network
with shared weights across layers. This can be seen by unfolding the network in time (see
section 3.4).

Another reason why weight sharing is used (in RNN used as associative memories, see chapter
1) is to guarantee stability of the dynamic system [Patterson, 1996].
'LVFXVVLRQ
All the restrictions listed in this subsection are a form of application of very general a-priori
knowledge about the problem to be solved. By applying restrictions, the number of different
possible networks (which means, all networks that could be the result of a training procedure) is
reduced, which can simplify the training problem. It is thereby assumed that an ‘adequate
solution’ network is still among the reduced collection of possible networks.

The more correct a-priori knowledge about the task can be incorporated into the ‘candidate’
neural network structure, the better will be the expected performance of the neural network,
applied to the task. The restrictions posed on the FRNN can therefore be a sensible application
of a-priori knowledge.
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The restrictions mentioned in this subsection are in fact ‘hardcoded’ into the network
architecture. But it is also possible to dynamically impose or remove restrictions on the network
parameters while the network is being trained. The restrictions to be applied are then prescribed
by the training algorithm (adaptive structures were not investigated in this project).

�������3DUWLDOO\�UHFXUUHQW�QHWZRUN��351�
The output vector \(n) of the FRNN consists of the first L elements of the state vector [(n), as
was shown in figure 2.3. So the output signals are a ‘subset’ of state signals. In a general state-
space description this is certainly not the case, the output is determined by a separate calculation
(the output equation) which is some function of the external input and the state.

To obtain a network that effectively has separate state and output units (analogous to a state-
space system that has separate process and output equations), the feedback connections from all
L output neurons yi(n) with i=1…L are removed. An example of the partially recurrent neural
network (PRN) [Robinson e.a., 1991], also named the simplified recurrent neural network
[Janssen, 1998], that results is shown in figure 2.9. The name ‘partially recurrent neural
network’ will be used in this report to avoid confusion in the terms simple/simplified recurrent
networks in the next subsection.

This particular case of a constrained FRNN results from the FRNN by pruning certain weights
(see subsection 2.2.3). It is discussed in more detail here, because it was found in speech
recognition applications [Robinson, 1991] [Chen e.a., 1996] where it was used instead of a
FRNN.
([DPSOH�RI�D�SDUWLDOO\�UHFXUUHQW�QHWZRUN
The example network has L=2 outputs , M=2 inputs and N=4 neurons from which L output
neurons compute yi(n), and N-L state neurons compute xi(n+1). In this architecture, there is a
clear separation between the L output neurons realizing the output equation *(.) and N-L
neurons computing the process equation )(.) of the state-space model. It should be noted that
both functions ) and * are computed by a single layer of neurons.

Figure 2.9; Example of a partially recurrent neural network

6WDWH�VSDFH�PRGHO�DQG�PDWUL[�QRWDWLRQ�RI�WKH�SDUWLDOO\�UHFXUUHQW�QHWZRUN
To obtain a state-space model of the partially recurrent network, a first approach would be to
take the state-space model of the FRNN and just set the weights corresponding to the removed
connections to zero.

There is however a more elegant way to represent the partially recurrent network. Because the
L external outputs are not fed back anymore as inputs to the neurons, the values of these L
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neurons outputs should not be part of the state vector [(n). Only neuron outputs that are fed
back into the network, and thus summarize information of the past, should be part of the state.

Therefore a new state-space model for the partially recurrent network is now derived in which
some variables of the system are redefined. The state vector [(n) is redefined to a state vector of
size (N-L) and vectors X(n) and \(n) remain unchanged. The two weight matrices :x and :u
(defined in equation 2.10) and the vector function )(.) (equation 2.12) are split up into upper
parts (subscript U) and lower parts (subscript L) as follows:
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These matrices fit into the original weight matrices (defined in equation 2.10) in the following
way:
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such that :x,U is L-by-(N-L) ; :x,L is (N-L)-by-(N-L) ; :u,U is L-by-M ; :u,L is (N-L)-by-M ;)U��� is L-by-L ; )L��� is (N-L)-by-(N-L) and �a;b is the a-by-b zero matrix. In the matrix :x
above it can be seen which connections are effectively set to zero. The following state-space
description results:
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$SSOLFDWLRQ��WKH�OLQHDU�QHWZRUN�FDVH
A partially recurrent network can be used to simulate any NL-dimensional linear state system L
of the form:
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when the neuron transfer functions are linear. In this case, the network structure of the partially
recurrent network exactly matches the linear state-space system equations. The linear NL-
dimensional system L of equation 2.25 can be simulated by a partially recurrent network by
choosing :x,L $; :u,L %� ��:x,U &; :u,U ', and N=NL+L linear neurons in the equations
2.24 for the PRN.

For pure linear system applications however, a neural network perspective is almost never
used. This is sensible because well-known and more effective methods already exist for linear
systems. [Haykin, 1998].
$SSOLFDWLRQ�RI�WKH�SDUWLDOO\�UHFXUUHQW�QHWZRUN�VWUXFWXUH�WR�VSHHFK�UHFRJQLWLRQ
A nonlinear partially recurrent network was used in [Robinson e.a., 1991] for speech
recognition. The reason for not using an FRNN was reduction in the number of weights and the
argument that the output and state do not have to coincide (as is the case in the FRNN).
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�������6LPSOH�5HFXUUHQW�1HWZRUNV��651�
Simple Recurrent Networks (SRN) are a category of neural networks that have far simpler
recurrent connections, compared to the FRNN. This category consists of networks that have
only ‘one-to-one’ (or ‘simple’) recurrent connections. This means that a certain neuron output is
fed back only to the input of one neuron (possibly itself), not to all neurons. Figure 2.10 shows
four examples of SRN architectures. Only the recurrent connections have a time delay, the
forward connections are instantaneous. Thin arrows represent one-to-one connections and the
broad arrows represent fully interconnected layers.

By convention [Hertz e.a., 1991], the network layers that use the delayed recurrent
connections in their computation, are called context layers because they use the state of the
network which represents a certain context (of previous network activation).

Figure 2.10: Four examples of SRN architectures. Thin arrows represent ‘one-to-one’
recurrent connections between layers.  Broad arrows represent fully
connected layers

/D\HU�GHILQLWLRQ
Again the new layer definition of subsection 2.2.2 gives the number of layers in SRN structures.
For the examples the number of layers is 3, 3, 3, and 4 for a, b, c, d respectively. In the figure
each layer is drawn on its own vertical position.
651�([WHQVLRQV
There are many possible extensions of these architectures, not shown in figure 2.10. For
example the use of multiple sets of context units as noted in [Hertz e.a., 1991] or different time
delays for different context layers.
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7KH�VWDWH�VSDFH�651
The general state-space neural network (subsection 2.2.1) can be straightforwardly modified
such that a SRN structure is obtained. This new structure will be called the state-space SRN in
this report. The assumption from subsection 2.2.1 is used that the function realized by the neural
network can be decomposed into layers. Then, the function )(.) in the first general state-space
model can be decomposed as follows:

����X�[�)�))�)�X�[)[ 66//�//L6666 ...)(),(...)(),()1( �� nnnnn ==+ (2.26)

where i is the number of layers and )Lj is the calculation performed by layer j. The state-space
SRN is now obtained by simply taking the following first layer function:

�X:[)�:X[) 6X6',$*[�66/� (n)n(n)n ¼+¼= )()),(( (2.27)

where ) describes the layer 1 neuron transfer functions, :u is a normal N1-by-NS fully filled
input weight matrix and :x,DIAG is a diagonal NS-by-NS recurrent weight matrix. The total state-
space SRN is described by:
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The requirement of a diagonal recurrent weight matrix corresponds to first taking NS input
neurons in the first layer of the F-network, and second, allowing only recurrent connections
from each output neuron to one other layer 1 input neuron. This last property makes it a SRN.
3URSHUWLHV
The SRN architectures can be divided into two substantially different classes, with the historical
development of SRN in mind. The first class has fixed recurrent connections (not learnable),
while the second class has learnable recurrent weights. The properties of these two classes will
be briefly looked at.
1. Fixed recurrent weights
The first class of SRN has fixed recurrent weights. They are set to a fixed value a � 1. When the
Simple recurrent networks in figure 2.10a,b are used together with fixed recurrent connections,
the resulting architectures are respectively the Elman network and the Jordan network [Hertz
e.a., 1991]. These are historically the first discrete-time RNN architectures used as sequence
mapping systems.

An advantage of this class of networks, according to [Hertz e.a., 1991], is that the fixed
feedback weights don’t have to be updated by a training algorithm. Hertz suggests that standard
backpropagation training algorithms for MLP are not able to update the recurrent weights. But if
the signals on the recurrent connections are just considered to be additional inputs, then the
recurrent weights are learnable by standard backpropagation training.

So it is not clear why fixed recurrent weights were used for these first discrete-time RNN
architectures if it is possible to let the recurrent weights be trained using a standard
backpropagation algorithm.

A possible reason for this could be that using standard backpropagation training for a SRN is
an ad-hoc method, i.e. it does not result by mathematically deriving an algorithm from an
expression for the network error but it is rather an intuitive extension of existing training
algorithms for static neural networks.
2. Learnable recurrent weights
The second class of SRN architectures has learnable feedback connections. As stated above
these feedback weights could be trained ad-hoc by using the standard backpropagation training.
It is also possible to derive a training algorithm. Architecture-specific training algorithms to
update the feedback weights ai were derived in literature [Hertz, 1991].
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Some SRN are state-space neural networks
Some SRN are special cases of the state-space neural network architecture. They can be fitted
into the state-space neural network description when the delay elements used all have unit
delay. In Appendix A.1 this is shown for two example SRN.
$SSOLFDWLRQV
SRN architectures were among the first discrete-time RNN architectures that have been
developed. They have been used for applications of sequence recognition (e.g. speech
recognition), sequence generation and simulating Finite State Machines [Hertz e.a., 1991].
'LVFXVVLRQ
Soon after SRN were used first as sequence mapping neural networks, more complicated and
powerful fully connected networks (like the FRNN) were proposed and research focused on
these architectures.

Some aspects of SRN are however still widely used in research, for example the simple one-
to-one recurrent connections and the delayed feedback from more than one other layer (e.g. in
[Bengio, 1996]). These aspects can be introduced into complex networks with multiple context
layers and multiple groups of delay elements (that may each have a different time-delay). These
complex networks are best described as modular networks, which will be introduced in section
2.4.

Such a specific network architecture can perform better on a given problem than more general
architectures like the FRNN: The restrictions imposed limits the number of free parameters and
can therefore make it easier to train the network to find an adequate solution. Restrictions can
also simplify the training algorithm and thereby speed up the training process (see subsection
2.2.3).
$Q�DOWHUQDWLYH�LPSOHPHQWDWLRQ��IHHGEDFN�RI�QHXURQ�DFWLYDWLRQ�YDOXHV
In some SRN architectures that have been used the neuron activation value (the linear weighted
sum of inputs) is fed back through the recurrent connections, instead of the neuron output value
[Hertz e.a., 1991]. So in these structures the feedback neurons that establish the state of the
network are linear, while the function of input and state to the output is nonlinear. This way the
context units accumulate a linear weighted moving average of past input values.

As an example, the updating rule for the i neurons in the context layer of the SRN of figure
2.10c can be [Hertz e.a., 1991]:

)()()1( nunSnS LLL +¼=+ a (2.29)

where at time n, Si(n) is the activation sum of neuron i in the context layer and ui(n) is the
external input applied. The nonlinear activation function f (.) is not used in this rule, but it is
used in the connection to the next layer:

))(()(� nSfny LFRQWH[WL = (2.30)

This approach is explained in much more detail in [Mozer, 1995] where the corresponding
algorithm is called focussed backpropagation. See also subsection 4.1.2 where a possible reason
for using linear feedback is discussed.

2.3  Architectures based on the input-output system model

There exists another general model for nonlinear dynamic systems, that does not make use of
the concept of state to model the system’s memory of past events. This kind of model is called
an input-output recurrent model since it can be expressed entirely as a functional relationship
between present and past system inputs and outputs.

A single-input single-output (SISO) recurrent neural network based on the input-output
recurrent model is shown in figure 2.11. The general input-output recurrent model structure is
referred to as the class of nonlinear autoregressive with exogenous input (NARX) models.
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Sometimes the same model is named NARMA or NARMAX, referring to the inputs as ‘moving
average’ [Haykin, 1998].

Figure 2.11;Recurrent neural network based on the NARX model

Besides the current input u(n), a number of r-1 past input values are kept in a delay line
memory. Instead of having an internal state that summarizes information of the past, a number
of q previous outputs are remembered, or regressed. This way a summary of all information of
the past can be kept, because for each time n the output y(n) depends on (so it can ‘remember’)
at least one y(m) for which: n-q+1 � m < n. This implies that information from the initial time n0
up to the present time n is used to form the present output y(n). The network dynamics are
described by the following equation:

))1(),...,(),1(),...,(()1( +-+-=+ rnunuqnynyFny (2.31)

The SISO NARX model described in this subsection has scalar signals u(n) and y(n) but these
could of course be replaced by vectors X(n) and \(n) and a network realizing a vector function)(.) to obtain a general M-input L-output NARX neural network.

For the static neural network inside the NARX network structure, all types of static neural
networks can be used. These specific choices and the choice of the variables q and r form the
special cases of this network class.
3URSHUWLHV
The network that computes the output y(n+1) is a standard MLP. An advantage of the NARX
model is therefore that it can be learned using standard algorithms for MLP. There is no
problem of state-outputs for which target values are unknown, as is the case in the state-space
model. This also allows the use of the teacher forcing technique during training on all outputs
(this technique will be discussed in subsection 3.6.2). The parameters q and r have to be chosen
in advance, similar to choosing the number of state neurons in a state-space network.
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A disadvantage of the NARX model is that the number of inputs to the static network can
become large. This number of inputs is the size of the extended input vector ](n) that holds all
network input:

7rnunuqnynyn )]1(...)()1(...)([()( +-+-=] (2.32)

whose size is Size(]) = ( q*L + r*M ) with L,M the number of external outputs and the number
of external inputs, respectively. Size(]) increases with q, r in steps of at least min(L,M). For
state-space networks, on the other hand, Size(]) = ( 2*L + 2*S ) with S the state size. The size
can be incremented in minimum step sizes of 2 (by incrementing S by 1) which is generally
smaller than min(L,M).
A SISO state-space neural network has an equivalent NARX network
It is shown in [Haykin, 1998] that any recurrent network described by state-space equations  can
be simulated by an equivalent input-output network model, if

1) the recurrent network is locally observable (subsection 4.1.3)
2) the network is SISO (single input, single output)

This important relation was not thoroughly investigated because the equations of a state-space
network in [Haykin, 1998] at first sight do not seem the most general case:
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The multiplication by & is equivalent to the operation performed in a linear neural network
layer. In deriving this and other properties, Haykin uses even the assumption that )(.) is
computed by a single layer of neurons. This seems like a highly restricted model and not a
general state-space model. It could however be that a sufficiently large enough class of state-
space models is captured by the above equation, but time did not permit an investigation of this.
In [Haykin, 1998] the model was just used without further comment.

More properties of NARX networks and their relationship with state-space model networks
will be given in chapter 4.
$SSOLFDWLRQV
The equivalence property given above shows that an equivalent NARX network could be used
instead of a state-space network in the SISO case. The NARX network model can be used in
any of the applications listed in this chapter, but no application to speech recognition has been
found in literature. The model was studied in the context of finite state machine identification
[Haykin, 1998].

2.4  Modular recurrent neural network architectures

Some neural network architectures can be best described as modular architectures. The
definition of a modular architecture as used in this report is: an architecture that consists of
several static neural networks, that are interconnected in a specific way. There is, in most cases,
not a clear boundary between a modular network and a single neural network because the total
modular architecture can be looked at as a single neural network, and some existing single
networks can also be described as modular networks. It is rather a convenient way of describing
complex neural networks.

In this section the category of modular recurrent neural network architectures is looked at,
modular architectures that all have one or more internal feedback connections.

The modular recurrent neural network architectures were not introduced in previous sections,
because they do not fit very well in the state-space system description or the NARX description.
Formally they can be described as a state-space system (like any dynamic system) but this could
result in a very complicated and unnecessarily large state-space system description.

In this section three classes of modular recurrent neural network architectures are presented:
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- Recurrent Multi-layer Perceptron (RMLP); subsection 2.4.1
- Block Feedback Networks (BFN) framework; subsection 2.4.2
- General modular neural network framework; subsection 2.4.3

The first model (RMLP) is a rather specific one and it is included as an example of a modular
architecture. Undoubtedly, many more such architectures are proposed in literature and they
cannot all be listed here. Another example is the Pipelined Recurrent Neural Network found in
[Haykin, 1998] and applied to speech prediction in [Baltersee e.a., 1998].

The second model is far more general and was meant to provide a structured way to describe a
large class of recurrent neural networks and their training algorithms. The third model attempts
to do the same and it turns out that this model is the most general one: it incorporates the first
two as special cases, so in this section the attention will be mainly focussed on the third model,
the general modular network framework.

�������5HFXUUHQW�0XOWLOD\HU�3HUFHSWURQV��50/3�
An extension of the regular MLP has been proposed by Puskorias e.a. (see [Haykin, 1998])
which adds self-feedback connections for each layer of the standard MLP. The resulting
Recurrent Multilayer Perceptron (RMLP) structure with N layers is shown in figure 2.12.

Figure 2.12; Recurrent multi-layer perceptron (RMLP) architecture with N layers

Each layer is a standard MLP layer. The layer outputs are fed forward to the inputs of the next
layer and the delayed layer outputs are fed back into the layer itself. So the layer output of time
n-1 for a certain layer acts as the state variable at time n for this layer. The global state of the
network consists of all layer states [i(n) together.

Effectively, this type of network can have both a very large total state vector and a relatively
small number of parameters because the neurons in the network are not fully interconnected.
There are no recurrent interconnections across layers. All recurrent connections are local (1-
layer-to-itself).
3URSHUWLHV
Comparing one layer of the RMLP structure with the FRNN architecture (see figure 2.3) it is
clear that one RMLP layer is in fact a type 1 FRNN network with N neurons and L=N outputs
for each layer. The RMLP can thus be written as a cascade of multiple FRNN networks.
$SSOLFDWLRQV
In [Haykin, 1998] the RMLP is applied to a chaotic time-series prediction problem. In general,
the RMLP can be used in any of the applications listed in this chapter. An application to speech
recognition was not found in literature.
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�������%ORFN�)HHGEDFN�1HWZRUNV��%)1�
A framework for describing recurrent neural networks that has been introduced by [Santini e.a.,
1995b] provides a systematic way for modular design of networks of high complexity. This
class of networks is called Block Feedback Neural Networks (BFN), referring to the blocks that
can be connected to each other using a number of elementary connections. The term feedback is
used because one of the elementary connections is a feedback connection, thus enabling the
construction of recurrent neural networks. The network that results from the construction can in
turn be considered a ‘block’ and it can be used again as a basic building block for further
construction of progressively more complex networks.

So a recursive, modular way of designing networks is provided. The training algorithm for any
BFN is based on backpropagation training for MLP and the backpropagation through time
(BPTT) algorithm for recurrent networks. It is recursively constructed along with the network
structure. So the BFN framework introduces a class of (infinitely many) recurrent networks,
which can be trained using a correspondingly constructed backpropagation algorithm.
7KH�%)1�IUDPHZRUN
The framework which describes the BFN and its training algorithms is called the BFN
framework in this report. This framework is not fully introduced in this report, because it turns
out the modular network framework in subsection 2.4.3 is an easier and more general way of
describing a large class of recurrent networks, which includes all BFN networks. For a full
description of the BFN framework see [Santini e.a., 1995a,b,c].

A very short presentation of the BFN framework will be given now. The basic unit is a single
neural network layer, an example of which is shown in figure 2.13a. The corresponding matrix
notation is shown in figure 2.13b. $ is a 6-by-3 matrix and )(.) is a 6-by-6 diagonal mapping
containing the neuron activation functions (of the form of equation 2.12). One such layer is
defined as a single layer block N.

D� E�

Figure 2.13;a) example of a single network layer ; b) the layer in BFN block notation
as a block N

This block computes the function:
))(()( nn L$)R ¼= (2.34)

Single layer blocks can be connected together using the four elementary connections shown in
figure 2.14. They are called the cascade, the sum, the split and the feedback connection. Each of
these connections consists of one or two embedded BFN blocks (these are called N1 and N2 in
the figure) and one connection layer (which has the structure of a single-layer block). This
connection layer consists of the weight matrices $ and %, and the vector function )(.). Each of
the four elementary connections itself is defined as a block and can therefore be used as the
embedded block of yet another elementary connection.
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Figure 2.14;The four elementary BFN connections: the cascade (a), feedback (b), split
(c) and sum (d) connection.

$SSOLFDWLRQV
BFN networks can be used in the same applications as other recurrent neural networks. A
specific application of the algorithmic construction of a training algorithm, is the automatic
construction of a training algorithm for given network structures. Many alternatives of a
network architecture could be tested and compared automatically this way.

One of the possible advantages of the BFN framework suggested by [Santini e.a., 1995b,c] is
that sub-classes of BFN networks may be compared, instead of comparing just individual
network architectures. The systematic way of construction suggests that theories might be
developed that apply to subclasses or the entire class of BFN networks, instead of applying only
to one architecture.
$SSOLFDWLRQ�RI�WKH�%)1�IUDPHZRUN�WR�GHVFULEH�UHFXUUHQW�QHWZRUNV
Some of the recurrent neural network architectures described in this report can be constructed
(along with a suitable BPTT training algorithm) using the BFN framework. Examples of such
BFN constructed networks can be found in [Santini, 1995a,b,c].
'LVFXVVLRQ
The BFN framework is not used further because it is superseded by the modular network
framework. This will be shown in subsection 2.4.3. BFN has however a very distinct feature:
networks are defined in a recurrent manner, whereas the modular network framework uses only
one level of hierarchy (a flat hierarchy). The implications of this feature were not further
investigated, but it is conceivable that it allows theorems to be proven that would not be
provable using a flat hierarchy description.

�������*HQHUDO�PRGXODU�QHWZRUN�IUDPHZRUN
In [Bengio, 1996] a general modular network framework is introduced. This framework is
similar to the BFN framework: it can be used to describe many different modular networks
which are built of neural network modules linked together. Each module is a static feedforward
neural network and the links between the modules can incorporate delay elements. In this
subsection the modular network framework is introduced. The purpose of this framework is:

- to describe many types of recurrent neural networks as modular networks
- to derive a training algorithm for a network that is described as a modular network

The use of the framework for developing such a training algorithm, that can do joint training
of the individual network modules, will be discussed in section 3.8. Here only the structural
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description method of the framework is introduced and used to describe neural network
architectures.

First the definitions will be given that are needed to describe modular networks. These are
followed by an example to clarify the definitions.
'HILQLWLRQV
Define a modular network structure having Nmod modules that are interconnected by links. Each
network module i = 1…Nmod has Li outputs and is static or memoryless. In other words, this
requirement means that each module has no internal delay elements. So, it cannot be a recurrent
network, for example.

Links are numbered l ³ [1,…,Nlinks] where Nlinks is the total number of links in the modular
network.

Define a link l as the connection of the output of module a to the input of module b. Because
the link comes from module a this module is called the predecessor module and is denoted by
p(l) with p(l) = a . The link goes to module b which is called the successor module, denoted by
s(l) with s(l) = b . Each link can have its own delay value, denoted d(l), implemented by delay
registers.

So a link l goes from a predecessor module p(l) to a successor module s(l) with a delay d(l).
Each module i computes a function )i:

))(),(,()( nnn LLLLL X=)\ = (2.35)

where \i = (yi1, yi2, …, yi;Li) is the module-output vector of module i consisting of Li scalar
outputs and )i(.)�is the vector function computing the network output, depending on the network
parameter vector (of module i) qi containing scalar parameters qi  {qij}. The external input
vector is Xi(n). The vector =i(n) holds all module-output vectors \p(l) (n - d(l)) of modules p(l) at
times n-d(l) for all  links l that go to module i.

To define =i(n) more clearly, first the set Si is defined that holds all links that have module i as
a successor (all links, that are going to module i):{ })( ilslSL == (2.36)

The number of elements of this set Si is the number of links going to module i :
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Each element j of Si will be denoted Si{j}. Then, with the following definition:

 })){(()( �� jSdnnz LM6L
-= �S�LM \ (2.38)

we can write down the vector =i(n) that contains Nl(i) vectors ]ij(n):
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So =i(n) contains all delayed outputs coming from other modules and possibly module i itself,
going to the input of module i. The delay d(l) can be different for each link and can be zero.

There is a restriction, which is needed to obtain a computable algorithm without algebraic
loops: for every closed path of links there must be at least one delay d(l) > 0 in one of the links l
that make up the path. A special case of this requirement is that a recurrent link that goes from a
module to the module itself must be zero.
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$Q�H[DPSOH�RI�D�PRGXODU�QHWZRUN
In figure 2.15, an example modular network, having two modules and three links, is given. The
variables just introduced can all be found in the figure. Note that delay d(1) is allowed to be
zero (in fact, arbitrary values of d(1) would give rise to the same network dynamics in this
example) whereas delays d(2) and d(3) must be greater than zero because otherwise algebraic
loops will be present in the network equations.

Figure 2.15; Example of a modular network. All variables as defined in the modular
network description are shown.

The vectors =i(n) for the example are given by:
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$SSOLFDWLRQ�RI�WKH�IUDPHZRUN
Many recurrent network architectures can be described with the modular network framework.
Two special cases of this framework are the FRNN and the state-space neural network
architecture. Both will be shown to be specific instances of modular networks in the remainder
of this subsection.

Other architectures that can be described by the modular network framework are the NARX
network architecture (using 1 module, r external inputs and q recurrent links with increasing
delay value) and the RMLP. This is not shown further in this report.
6SHFLDO�FDVH����WKH�)511
The Fully Recurrent Neural Network is a special case of the modular network framework. The
FRNN can be specified as a single-module network having one link that connects the module
output vector to its input. The module is a single layer static feedforward network. The FRNN is
shown as a modular network in figure 2.16.
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Figure 2.16;FRNN presented as a single module network with one delayed
recurrent link

The static feedforward network module 1 has N neurons (so N outputs), M+N inputs, and as
parameters the weights q1=Z1={wij}. Here the weights wij and N, M are the same as defined for
the FRNN in subsection 2.2.2 and equation 2.6.

The module performs the computation:
))(),(,()( ����� nnn X<)\ = (2.41)

Because the output \1(n) is taken as the external output, we have \1(n) = \ext(n).
It may seem that all N neurons are always connected as external outputs, which does not

conform to the general FRNN architecture, where a number of neurons L �N are taken as
external outputs. However, this problem is solved by the specific definitions of the errors on
each neuron ei(n) as will be given later in section 3.1 in equations 3.1 / 3.2. Effectively, by only
defining target values for the L first neurons and not for the other neurons the situation of L < N
external outputs is created. For more information see section 3.1

Now the entire network function can be described by:

))(),1(,()( nnn H[W�H[W X\:)\ -=  (2.42)

where )(.) is chosen identical to the corresponding function in the FRNN (equation 2.13) and
the parameters are the weight matrix : as defined in equation 2.10c for the FRNN. It is now
identical to the FRNN.
General single-module recurrent network and multilayer FRNN
Instead of allowing only one-layer modules in the single-module structure (figure 2.16), every
type of static neural network could possibly be allowed. In allowing this, an extension of the
FRNN to a general single-module recurrent network is obtained.

When module 1 is restricted to a multilayer perceptron, the multilayer FRNN architecture is
obtained.

Only if targets are defined for all outputs, this structure can also be seen as a special case of
the input-output network description (subsection 2.3) with the delay buffer configuration q= 1
and r = 1.
6SHFLDO�FDVH����WKH�JHQHUDO�VWDWH�VSDFH�QHWZRUN�DUFKLWHFWXUH
The general state-space neural network architecture, introduced in subsection 2.2.1, can be
described using the modular network framework. The network architecture in a two-module
description is shown in figure 2.17.
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Figure 2.17; General state-space network is a two-module network with two links

In this case the functions ) and * are each computed by a single neural network. It is also
possible to let several separated static network modules compute ) or *. This gives different
modular structures than the one given here. But in that case it is also possible to merge the
separate static networks back into one network so that the two-module description is again
obtained.
(TXDWLRQV�RI�WKH�PRGXODU�VWDWH�VSDFH�QHWZRUN

The equations for the two-module state-space network are now given. There is one self-
recurrent link (link 1) and a link (link 2) from module 1 to module 2. The external input Xext(n)
is fed to both modules. The modules compute the following functions:
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Using the configuration as shown in figure 2.17 the network equations can be rewritten to:
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where :1 and :2 are the weights of module 1 and 2 respectively. When the state [(n) is
defined [(n) = \1(n-1) the general state-space description of equation 2.1 is obtained:
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where the functions )(.) and *(.) are realized by static neural networks.
3URSHUWLHV�DQG�GLVFXVVLRQ
The following goals of the modular network framework were mentioned:

- to describe many types of recurrent neural networks as modular networks
- to derive a training algorithm for a network that is described as a modular network

These goals are also realized by the BFN framework. Still, the modular network framework
supersedes the BFN framework that was introduced in the previous subsection. The reasons for
this are:
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- it can describe more network architectures than BFN. An example case, the two-layer
RMLP is shown in Appendix A.2. It can not be described by the BFN framework.

- static network modules can be any type of static neural network. BFN on the other hand
prescribes standard single- or multilayer perceptrons.

$SSOLFDWLRQV
The modular network framework is used in this report for derivation of training algorithms. It
can also be used for automatic derivation and automatic calculation of training algorithms, given
a modular network structure. Training algorithms for modular networks are the topic of section
3.8.

In [Bengio, 1996] the application of joint training of neural networks is suggested. This means
for example that a collection of neural networks are first trained separately until no performance
increase can be achieved anymore. Then the collection of networks is jointly trained (using an
algorithm derived with the modular network framework) so that an additional performance
increase can be realized. In this example it is assumed that targets are known for all modules.

2.5  Conclusions

Many types of recurrent neural networks can be constructed. A number of these architectures
have been listed in this chapter, but naturally this can not include all types encountered in
literature.

It was found that the general modular network framework is a convenient way to describe a
large class of architectures. It is able to describe all architectures mentioned in this chapter.
Based on the results in this chapter a hierarchical ordering of network architectures is possible.
This ordering is shown in figure 2.1. The most general architectures are listed left. Architectures
that can be conveniently described as a special case of another architecture, are listed at the right
of it.

An architecture that was not found in literature but is introduced in this report, is the single-
module recurrent network (or multilayer FRNN). This structure contains the FRNN as a special
case.

We can conclude that implementing the general modular network framework seems the best
option. This gives the option to simulate all recurrent network architectures so that they can be
experimentally tested.

However, at the beginning of this project it was estimated that implementing the general
framework would be too much work. Therefore, the state-space network was chosen as the
second-best architecture. The state-space network architecture is promising because:

- it was found that it can in principle simulate any state-space system. The FRNN can not
do this. (This will be shown in subsections 4.1.4 and 4.1.5).

- it contains architectures like the FRNN, some Simple Recurrent Networks (SRN),
partially recurrent network and the multi-layer RNN as special cases. In literature it was
found that these architectures are often used for speech recognition tasks.

The conclusion that can be drawn is that the state-space architecture should be further
investigated. But before final conclusions are drawn, neural network training algorithms should
be investigated.

Neural network structures are only useful if they can be trained. In the next chapter training
algorithms for recurrent networks will be investigated. The focus will be on training algorithms
for the most promising structures that were listed in this chapter.





33

CHAPTER 3 TRAINING ALGORITHMS FOR RECURRENT NEURAL
NETWORKS

A training algorithm is a procedure that adapts the free parameters of a neural network in
response to the behavior of the network embedded in its environment. The goal of the
adaptations is to improve the neural network performance for the given task. Most training
algorithms for neural networks adapt the network parameters in such a way that a certain error
measure (also called cost function) is minimized. Alternatively, the negative error measure or a
performance measure can be maximized.
$LP
In this chapter different training algorithms and strategies are investigated. Based on the
conclusions of the previous chapter, the focus will be on learning algorithms for state-space
networks and for modular networks in general. As done for network structures, a categorization
of training algorithms will be made. Finally, comparing learning algorithms should lead to a
decision on what algorithms are to be implemented.
&KDSWHU�RXWOLQH
In this chapter on training algorithms, first

- error measures are presented (section 3.1) from which training algorithms may be derived
;

- training algorithms are then classified into a number of categories, depending on their
properties (section 3.2) ;

- in sections 3.3 and 3.4 two training algorithms, Backpropagation Through Time (BPTT)
and Real-time Recurrent Learning (RTRL), for training FRNN are derived. Restricting
the discussion to algorithms for FRNN first allows a detailed derivation ;

- in section 3.5 the derivation of both training algorithms will be extended from FRNN to
modular networks ;

- on the two basic training algorithms numerous variations are possible, some will be given
in section 3.6 ;

- references to other training approaches will be made in section 3.7 ;
- the chapter conclusions, with a discussion and comparison of training algorithms, are in

section 3.8.

The sections on training algorithms in this chapter will be augmented by small-scale
experiments that demonstrate the workings of the algorithms. These experiments were
performed using the ModNet toolbox for Matlab. (The toolbox is introduced in subsection
3.8.2.)

3.1  Error measures

Error measures can be postulated because they seem intuitively right for the task, because they
lead to good performance of the neural network for the task, or because they lead to a
convenient training algorithm. An example is the Sum Squared Error measure, which always
has been a default choice of error measure in neural network research. It will be introduced first
in subsection 3.1.1.

Error measures can also be obtained by accepting some general ‘induction principle’ and
deriving from this an error measure that conforms to this principle. In subsection 3.1.2 some
induction principles are briefly mentioned. In subsection 3.1.3 an additional error measure is
mentioned that can be derived from an induction principle appropriate for classification.
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�������7KH�6XP�6TXDUHG�(UURU�PHDVXUH
A standard error measure which is used for training neural networks is the Sum Squared Error
measure (SSE):
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The index i runs over all L network outputs and the error signal ei(n) is defined for all i as the
difference between the target value di(n) and the actual external network output yi(n):
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where the set D holds all outputs i ³ D that have a target defined. If no target is defined the
error is zero. Note that it is possible to make D time-dependent, D(n), which means targets can
be defined on specific time instants only. This situation is called partial supervision and will be
introduced later  in subsection 4.3.3.

Using this error measure, big differences between output and targets are ‘punished’ more than
small differences. At the same time, the squaring of the error will ensure the error is always a
positive value and that a derivative of the error measure with respect to the network weights wj
exists for every ei(n).

The coefficient ½ in the error measure is used to simplify the subsequent derivation of a
training algorithm.
(UURU�PHDVXUHV�IRU�G\QDPLF�QHXUDO�QHWZRUNV
Error measures for a static neural network use only the errors at the outputs of the network at the
current time n. These are called instantaneous error measures and are denoted E(n). In dynamic
neural networks, the network performance is usually considered over a relevant time interval
instead of a single time n. The network error measure over a time interval [n0, n1] can be defined
as the sum of the instantaneous error measures at each of the times in the interval:
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Using equation 3.3 an instantaneous error measure for a static network can be converted into a
total error measure for use in dynamic neural networks. Note that in this report E(n0,n1) is used
as a short notation of ETOTAL(n0,n1).
6XP�6TXDUHG�(UURU�PHDVXUH�IRU�G\QDPLF�QHXUDO�QHWZRUNV
Combing equations 3.1 and 3.3, the SSE for dynamic neural networks for an interval [n0,n1] is
given by

ÊÊ
= =

= �

� �

�
�� )(

2
1),(

Q

QQ

/

L
L727$/ nennE (3.4)

�������,QGXFWLRQ�SULQFLSOHV
7KH�PD[LPXP�OLNHOLKRRG�PRGHO�IRU�QHXUDO�QHWZRUNV
A probabilistic principle can be used as an induction principle. This probabilistic principle and
resulting error measures are given in [Rumelhart e.a., 1996] and [Bishop, 1995] for the case of a
static multilayer perceptron. This probabilistic principle is actually the maximum likelihood
principle, according to [Bishop, 1995]. It states that the neural network has to be found, which is
the most likely explanation of the observed data sequence (the ‘data’ means the examples,
including both input patterns and their targets).
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Under the assumption of independence of observed examples and a certain probabilistic
distribution of the targets dk(n), and interpreting the network outputs yk(n) as the mean of dk(n)
(in other words a prediction of the target dk(n) ), some error measures can be derived. Even the
Sum Squared Error measure that was postulated in the previous subsection, may be derived
using the maximum likelihood model. See [Rumelhart e.a., 1996] or [Bishop, 1995] for the
derivation of error measures using maximum likelihood.
2WKHU�LQGXFWLRQ�SULQFLSOHV
Discussions on other induction principles can be found in [Smolensky e.a., 1996] and [Bishop,
1995]. Examples of information-theoretic approaches are [Rissanen, 1996] the Minimum
Description Length (MDL) principle and the Maximum Mutual Information (MMI) or Infomax
principle. Principles rooted in statistics are described in [Bishop, 1995], e.g. the Bayesian
inference approach. Another principle that can be found in Support Vector Machine literature is
Structural Risk Minimalization (SRM) [Haykin, 1998]. This principle seeks to minimize the
upper bound on the network generalization error, as opposed to minimizing the error on a
training set which is the common goal in neural network training.

�������7KH�FURVV�HQWURS\�HUURU�PHDVXUH
Another well known error measure is the cross-entropy error measure that can be used when the
neural network outputs are interpreted as probabilities. They are used for speech recognition in
[Robinson e.a., 1991]. The probability interpretation of outputs can be very useful for reasons
explained in [Bishop, 1995].

Because of time limitations the lengthy derivation of the cross-entropy error measure, which
gives insight into the motivation behind choosing an error measure for classification tasks, can
not be given here. For more details on this and other error measures [Bishop, 1995] is advised
(sections 6.7-6.9). In [Rumelhart e.a., 1996] and [Smolensky e.a., 1996] this topic is also
treated.

3.2  Categorization of training algorithms

Different error measures lead to different algorithms to minimize these error measures. Training
algorithms can be classified into categories depending on certain distinguishing properties of
those algorithms. Four main categories of algorithms that can be distinguished are:
1. gradient-based algorithms. The gradient of the equation of the error measure with respect to

all network weights is calculated and the result is used to perform gradient descent. This
means that the error measure is minimized in steps, by adapting the weight parameters
proportional to the negative gradient vector.

2. second-order gradient-based algorithms. In second-order methods, not only the first
derivatives of the error measure are used, but also the second-order derivatives of the error
measure.

3. stochastic algorithms. Stochastic weight updates are made but the stochastic process is
directed in such a way, that on average the error measure becomes smaller over time. A
gradient of the error measure is not needed so an expression for the gradient doesn’t have to
exist.

4. hybrid algorithms. Gradient-based algorithms are sometimes combined with stochastic
elements, which may capture the advantages of both approaches.

This list is probably not complete and other classifications are possible. In this report, only
gradient-based algorithms will be discussed in detail (as they are the default choice for training
neural networks). The four categories are further discussed below.
�� *UDGLHQW�EDVHG�DOJRULWKPV
Gradient-based training algorithms compute an exact or approximate gradient of the error
measure with respect to the free parameters of the network (the weight vector Z). The gradient
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of E with respect to a variable Z is denoted ¶wE. Different classes of gradient algorithms can be
distinguished for recurrent networks, based on the way of gradient computation and the way of
operation (continuous or epochwise updating of weights)  [Williams e.a., 1995]. Table 3.1 lists
these classes. These are a number of very common classes of training algorithms which include
all of the algorithms in this report, but it is very likely that not all existing algorithms can be
classified in this way.

a b c d
7\SH�RI�DOJRULWKP 2SHUDWLRQ *UDGLHQW�FRPSXWDWLRQ

SHUIRUPHG�E\�WKH�DOJRULWKP
&RPSXWHG�DW
ZKLFK�WLPH�V�

exact gradient
computation algorithm

continuous ¶wETOTAL(n0,n) at each time n

“ epochwise ¶wETOTAL(n0,n1) at end-time n1

real-time gradient
computation

continuous ¶wE(n) at each time n

“ epochwise ¶wE(n) at each time n =
n0…n1 ; but weight
update only at n=n1

approximate gradient
computation

continuous approximation to
¶wETOTAL(n0,n)

at each time n

“ epochwise approximation to
¶wETOTAL(n0,n1)

at end-time n1

Table 3.1: Classes of gradient based algorithms for recurrent networks

The interval [n0,n] is the interval of time of operation in the case of continuous operation and
[n0,n1] is the interval of one epoch in case of epochwise operation. Columns a and b describe the
algorithm type. Column c shows what gradient computation this algorithm performs and column
d shows when this calculation is done.

Using the gradient to adapt the weight vector as in equation 3.5 below, gradient descent is
performed such that a local or global minimum of the error measure E is found. The parameterh is the learning rate:
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Particular cases of these equations, using for E the Sum Squared Error measure and selecting as
a neural network the FRNN, will be given in sections 3.3 and 3.4.
Approximate gradient algorithms are related to hybrid algorithms
The approximate gradient algorithms perform weight updates that deviate from the true
gradient. These deviations are stochastic in nature, for example depending on the order of
presentation of training examples to the network. Therefore the approximate algorithms can also
be considered to be hybrid algorithms. The approximate gradient algorithms can therefore be
called stochastic gradient algorithms.
Gradient-based training algorithms for the FRNN and RNN
Depending on the type of neural network, choice of error measure E, computation of the
gradient and the way of operation, different training algorithms result. The following algorithms
for the Fully Recurrent Neural Network and the subsets of the FRNN  are investigated in this
chapter:
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1. Backpropagation Through Time (BPTT)
2. Real-time Recurrent Learning (RTRL)

These are the two best known algorithms for training recurrent networks. The basic form of
these algorithms will be derived in this chapter.
Gradient-based training algorithms for modular networks
The method of gradient-based joint training of modular networks (the modular network
framework was  introduced in subsection 2.4.3) is discussed in section 3.5. The two main
approaches BPPT en RTRL also apply to modular networks.
�� 6HFRQG�RUGHU�JUDGLHQW�EDVHG�DOJRULWKPV
Normal gradient-based algorithms actually perform a first-order (linear) approximation of the
error measure function in the local neighborhood of the parameter vector Z. Second-order
algorithms make a closer approximation of the error measure function by performing a second-
order (quadratic) local approximation of the cost function around Z. The second-order
derivatives are needed to make this closer approximation [Haykin, 1998].

In many algorithms this computation is not performed exactly, but an estimation of the second
order derivatives is made to speed up the process or to overcome potential problems associated
with an exact computation [Haykin, 1998].

Well-known second-order algorithms are Newton’s method, the quasi-Newton method and the
conjugate-gradient method. These can all be found in [Haykin, 1998]. The Levenberg-
Marquardt algorithm is another powerful second-order training algorithm [Bishop, 1995].
Second order methods are known to be computationally much more efficient than standard
gradient descent for many neural network learning tasks. Note that a single iteration of a
second-order method requires more calculations, but usually far less iterations are required for
the total learning task, thereby providing an overall saving of computations. A comparison done
in [Peelen, 1999] shows the dramatic improvement using second order methods for a
classification task.
�� 6WRFKDVWLF�DOJRULWKPV
Stochastic algorithms make use of random weight updates. These updates are not completely
random, but the parameters of a stochastic process (which is used to generate the random
updates) are dictated by the training algorithm.

An error measure is needed to test the quality of the parameters (weights) found and to select a
parameter set with the highest quality (the lowest error measure) out of the several parameter
combinations tested. The goal of the algorithm is to minimize the error measure. The advantage
of stochastic algorithms is compared to gradient algorithms that the gradient of the error
measure is not computed, so an expression for this gradient does not even have to exist.

Stochastic algorithms have been used to train neural networks or to optimize the structure of
networks. Examples of error measures where an expression for the gradient is certainly not
known, are mostly found outside the domain of neural networks. For example:

- The error measure is a value that is (subjectively) assigned by a human. In this case the
error measure itself is stochastic.

- The error measure results from a complex simulation.
- The error measure results from operations performed in ‘the real world’. It can depend,

for example, on the behavior of a robot interacting with its environment.

An example of a stochastic algorithm is a genetic algorithm. In (for example) [McDonnel,
1994] genetic algorithms are used for training recurrent neural networks.
���+\EULG�DOJRULWKPV
In hybrid algorithms a gradient algorithm is combined with elements of stochastic algorithms.
The approximate gradient algorithms were already mentioned as being examples of a hybrid
algorithm.

Another example of a hybrid algorithm would be an algorithm that alternates between a
gradient algorithm and a stochastic algorithm, switching to the stochastic mode when the
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gradient algorithm gets stuck in a local minimum and switching back to a gradient mode again
after some time.

3.3  Backpropagation Through Time (BPTT) algorithm for FRNN

The Backpropagation Through Time (BPTT) algorithm is an algorithm that performs an exact
computation of the gradient of the error measure for use in the weight adaptation. In this section
the BPTT algorithm will be derived for a (type 1) FRNN using a Sum Squared Error measure.
0HWKRGV�RI�GHULYDWLRQ�RI�WKH�DOJRULWKP
There are two different methods to develop the BPTT algorithm. Both are shown in this report:

- derivation by unfolding the network in time, which also gives intuitive insight in how the
algorithm works.

- a formal derivation of the algorithm using the ordered derivative notation.

The ‘unfolding in time’ approach will be explained first in subsection 3.3.1 because the
unfolding procedure gives a better understanding of how the algorithm works. This approach is
only briefly introduced in this subsection and the rest of the derivation can be found in appendix
B.1. The second approach will be given in subsection 3.3.3, after the ordered derivative notation
has been introduced (in subsection 3.3.2).

�������'HULYDWLRQ�RI�WKH�%377�DOJRULWKP�E\�XQIROGLQJ�WKH�QHWZRUN�LQ�WLPH
As an error measure to be minimized, the Sum Squared Error for a sequence (subsection 3.1.1)
denoted E(n0,n) is used:
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The error measure is calculated for one example sequence that runs in the time interval [n0,n].
Time n can be the current time (in this case, future values of ei(m), m > n, are still unknown) or
the end time of the example sequence (in this case, n=n1).

Using equation 3.5a the error measure may be minimized by gradient descent:
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Before this can be further developed, the network equations are first given and the network has
to be unfolded in time. The network dynamics of equations 3.8 are used to describe the FRNN.
The matrix notation is not used because the algorithm will be developed in scalar notation. The
equations are repeated here for convenience.
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Note that initial values yi(n0-1) have to be known to be able to compute the initial extended
input vector ](n0) = {zi(n0)}. The example FRNN of subsection 2.2.2 is repeated in figure 3.1 for
convenience.



3.3  Backpropagation Through Time (BPTT) algorithm for FRNN

39

Figure 3.1; Example FRNN with four neurons and two external inputs

In this approach, the recurrent network is unfolded in time into an equivalent static
feedforward network. For a certain initial time n0 and current time n, the Fully Recurrent
(single-layer) network NR with N neurons is unfolded into a feedforward network NR* which
has a layer of N neurons for every time step in the interval [n0,n]. So each neuron in NR has a
copy in each layer of NR* and each weight wij in NR that connects unit j to unit i through a
delay, has a copy wij(m) in NR* that connects unit j in layer (m-1) to unit i in the next layer m.
Each input weight wij (with 1 � i � N and N+1 � j � N+M ) that connects input u(j-N)(.) to neuron
i has a copy wij(m) that connects input u(j-N)(m) to neuron i in layer m.

As an example of unfolding, the unfolded equivalent of the example FRNN of figure 3.1 is
presented for four time-steps (in the interval [n0,n] =[0,3] ) in figure 3.2. The labels for the sets
of duplicated weights wij(m) are shown on the left.

The unfolding of the network solves the problem of unknown target values for the hidden
neurons N3 and N4 because at time n=3, the only known error terms e1(3) and e2(3) can be
backpropagated through neurons N1 and N2 in layer 3 to neurons N3 and N4 in layer 2 with the
backpropagation algorithm described in this section.

The network dynamics of the unfolded FRNN are now given by the equations:
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Figure 3.2; Unfolded type 1 example FRNN for the time interval [0,3].

The only difference with the standard FRNN dynamics (equations 3.8) is that the weights wij
are now denoted as multiple copies wij(m). Because they are just copies, wij(m) = wij holds for
all times m. But this approach does allow different partial derivatives with respect to the error
measure, so the following situation is very well possible:
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With the unfolded network and duplicated weights, the gradient computation of equation 3.7
can be decomposed as follows [Williams e.a., 1995] into multiple partial derivatives.

ÊÊ
== �
�=�

�
�
�=�

� Q

QP LM

Q

QP LM

LM

LMLM mw
nnE

w
mw

mw
nnE

w
nnE

��
)(
),()(

)(
),(),( ��� (3.11)

where �wij(m)/�wij = 1 because a change in the weights wij of the recurrent network NR implies
an equal change in each copy wij(m) in network NR

*. The last equation implies that the gradient
of the recurrent network can be obtained by calculating the partial derivatives of the error
measure with respect to all weights wij(m),  m ³ [n0,n] in the unfolded equivalent static network
NR* and add them up.

The algorithm is obtained by further developing the expressions for the partial derivatives�E(n0,n)/�wij(m). This is shown in appendix B.1. For a similar derivation of BPTT for the type 2
FRNN, by unfolding the network in time, see [Williams e.a., 1995].

�������,QWURGXFWLRQ�WR�WKH�RUGHUHG�GHULYDWLYH
To proceed with the formal derivation of the BPTT algorithm (that does not use unfolding in
time) the ordered derivative notation has to be introduced. The ordered derivative was first
introduced by Werbos (referred to in [Santini, e.a., 1995b]). A formal definition of the ordered
derivative is given in [Santini e.a., 1995b]. In this report the full definition is not shown because
it would occupy several pages. The chain rules for ordered derivatives that result from the
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ordered derivative definition will however be given and used. The chain rules are followed by
an example to clarify the concept.
'HILQLWLRQV
Let qj with j=1…n denote the variables of a system and L(q1,…qn) be a scalar function of these
variables. The variables are ordered such that each variable qj can depend on (can be a function
of) the variables ql…qj-1 but does not depend on qj+1…qn. So we have for each j:

),...,,( ��� -= MMM qqqfq (3.12)

Define a set Dj that holds all indices k for which qk depends on qj:{ })(...,| MNNM qfqkD ==  (3.13)

with the definition of ordered variables just given, this simply becomes:{ }nD M 2,....,j1,j ++= (3.14)

These definitions will be used in the remainder of this subsection.
As stated before the exact definition is not included in this report, so a less formal ‘definition’

will be given here. The ordered derivative is actually defined as a partial derivative in the
ordered-variable system described above. It is denoted by:
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In the ordered-variable system, the ordered derivative has the general form �+X/�qj (where X
can be any qk or the scalar function L). This term describes all influence (both direct and
indirect, through the system equations) of qj upon X. There is an important aspect to the
notation: when ordered derivative notation is used, the default partial derivative notation �X/�qj
is assigned a different meaning. This notation is then used to denote all direct influence on qj
upon X, not including the indirect influence through other system variables. Therefore it will be
called direct derivative in this section for convenience.

Another way to state the difference between derivatives, is the following:
- the ordered derivative �+X/�qj is computed by first substituting all equations that depend

on qj into the expression X and then computing the partial derivative.
- the direct derivative �X/�qj is obtained by calculating the partial derivative of X without

substituting any equations. In effect, the system equations are decoupled before the
calculation.

&KDLQ�UXOHV�IRU�RUGHUHG�GHULYDWLYHV
For computing ordered derivatives two chain rules can be derived [Santini e.a., 1995b]. The first
chain rule for ordered derivatives is given by:
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This states that L directly depends on qj (the left) term and indirectly, through all variables
qk=fk(…,qj,…) that are a direct function of qj.

The second chain rule is given by:
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Again the overall influence of qj upon L is divided into direct influence (left) and indirect
influence through all variables qk that are both directly and indirectly influenced by qj.

The first chain rule will be used in the derivation of the BPTT algorithm. The second chain
rule will be used in the derivation of the RTRL algorithm for modular networks.
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([DPSOH�RI�WKH�XVH�RI�WKH�RUGHUHG�GHULYDWLYH
In the following example [Bengio, 1996] of the ordered derivative, the following system is
defined:
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In this system z has a direct influence on y but also an indirect influence through x.
1. The standard partial derivative can be calculated (using the chain rule) as
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2. the ordered derivative �+y/�z is calculated (using its first chain rule) as
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To perform the computation the first chain rule (equation 3.15) was used two times. The first
use of the rule was to decompose �+y/�z as shown and the second (implicit) usage was in
calculating
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(3.19)

which holds because y does not indirectly depend on x, only directly.
'LVFXVVLRQ
The result of both methods in the example above is the same. The difference lies not in the
result, but in the notation. Using the standard partial derivative there is no notation for the term
“-2” in the result and it is written down directly. Using the ordered derivative method, this term
is denoted �y/�z and represents only the direct influence of z on y (without any substitutions).

On the other hand, the term �+y/�z denotes all influence (both direct and indirect through
substitutions) of z on y. The ordered derivative approach allows easier derivation of algorithms
in some cases, for example in deriving the BPTT algorithm. This was also noted in [Haykin,
1998].
&ULWLFLVP�RQ�WKH�RUGHUHG�GHULYDWLYH
The ordered derivative is sometimes introduced in literature as a ‘new’ mathematical operation
not equal to the standard partial derivative. The formal definition of the ordered derivative
(given in [Santini e.a., 1995b]) also does not use the standard partial derivative but a separate
definition. This viewpoint is taken in [Santini e.a., 1995abc] and [Bengio, 1996].

Opposed to this stands the viewpoint that the ordered derivative in fact equals the standard
partial derivative so it is nothing new, and the only new thing is the definition of the direct
derivative. This viewpoint is taken in [Baldi, 1995] and in this report.

Therefore the sole use of the ordered derivative can be criticized, but it is a fact that this
notation allows a very clear derivation of algorithms and seems to be approved upon by several
authors [Haykin, 1998] [Bengio, 1996] [Williams e.a., 1995]. The final results (i.e. the
algorithm) of ordered derivative derivations are of course equal to those using the standard
partial derivative.
$OWHUQDWLYHV�WR�WKH�RUGHUHG�GHULYDWLYH�QRWDWLRQ
In literature, the ordered derivative notation is not always explicitly used. There are at least
three alternatives to this notation. The first is to always use standard partial derivative notation
and stating in the text if a particular derivative denotes ‘all influence’ like the normal partial
derivative or just ‘direct influence’. This was done in [Baldi, 1995]. The second alternative
would be to simply introduce a very clear different notation (e.g. �*u/�v ) for the direct
derivatives, but surprisingly this was not found in literature. Yet another approach is followed in
[Williams e.a., 1995] and in Appendix B.1 in this report where a new set of variables is defined
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that create a decoupled version of the original system equations. These new variables are used
(together with the standard partial derivative) in denoting direct derivatives.

�������'HULYDWLRQ�RI�WKH�%377�DOJRULWKP�XVLQJ�WKH�RUGHUHG�GHULYDWLYH
The BPTT algorithm is derived now using the ordered derivative notation. Again the gradient
descent procedure (equation 3.7) is used. The gradient is computed using the ordered derivative
to account for all influence of the weights on the error measure:

LM
LM w

nnEw �
�-=D + ),( �h (3.20)

The weights wij are not denoted with a time index (like wij(m)) because ‘multiple copies’ of
weights are not made. The values of wij are always the ‘latest’ values so they could be denoted
as wij(n), but this is easily confused with the ‘multiple copies’ notation so they will be just
denoted by wij.

From here, the first chain rule for ordered derivatives (equation 3.15) will be used a few times
during the derivation. Because the parameters wij of neuron i can only affect the error measure
indirectly through the sums si(.) and thus the outputs yi(.) of neuron i, the first chain rule can be
applied twice as follows:
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The direct derivative terms �E/ �wij and �E/�si(m) are zero because the variables wij and si are
not directly present in the error measure E.

For the first term in the above equation the first chain rule can be applied twice again. Because
the outputs yi(m) influence E(.) not only directly but also indirectly, through the ‘next’ sums
sl(m+1) and outputs yl (m+1), applying the first chain rule twice yields:
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This expression exists for n0 � m � n only if an additional requirement is made that will be given
soon in equation 3.25. Using the definition of the error measure 3.6, selecting a neuron transfer
function � for all neurons and using equations 3.9a,b to obtain the weight wli:
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we now obtain for n0 � m � (n-1) :
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Because the outputs at times m � n+1 do not influence the cost function E(n0,n), the following
condition arises:
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Finally, using this condition a recursive equation for �+E(n0,n)/�yi(m) is obtained:
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The recursively obtained terms are used in equation 3.21, which gives the required weight
update.

The following definitions are now made for a compact notation of the algorithm:
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This gives for equation 3.26:
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Using equations 3.20, 3.21 and substituting the following partial derivatives:
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the weight adaptation at time n can now be written down:
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The values of di(.) required for the adaptation can be recursively computed using equations 3.28
in a so-called single backward pass. The following forward pass is the use of equation  3.30 to
calculate the weight updates. The BPTT algorithm is named after the backpropagation of
gradients according to equation 3.28. To obtain zj(n0), initial conditions of the delay elements
are set zero, yj(n0-1) = 0.

The same equations were obtained in appendix B.1 by unfolding the recurrent network in time
and proceeding the derivation with the unfolded network.
7KH�%337�DOJRULWKP
Now the BPTT algorithm can be summarized as follows:

1. set initial time n = n0

2. calculate the N neuron output values for time n using the network equations 3.8
3. recursively calculate ei(m) then di(m) with equations 3.23 backwards in time starting

with m= n back to m = n0.
4. calculate for all i,j the weight updates according to equation 3.24
5. update the weights wij

6. increase time n to n+1 and go back to step 2

�������9DULDWLRQV�RQ�WKH�%377�DOJRULWKP
From the general BPTT algorithm description above, some variations can be developed. The
epochwise BPTT, real-time BPTT and truncated BPTT are mentioned below. Some more BPTT
variations can be found in [Williams e.a., 1995]. The reason for using these variations is often to
reduce computations as will become clear in the next subsection.
(SRFKZLVH�%377
If we take the BPTT algorithm as derived above and perform the weight update only at the end
of each training example sequence (which is called an epoch), the epochwise BPTT algorithm is
obtained. An epoch E has a length LE and is presented to the network during the time interval
[nE0,nE1] where LE = (nE1 - nE0+1). All epoch intervals are subsets of the network operation
interval, so [nE0,nE1] ± [n0,n] for all E. After weights are updated at the end of an epoch, the new
weights are used as starting weights for the next epoch.

The epochwise BPTT differs from the standard BPTT algorithm in the following aspects:
- The error measure used is the error over one epoch E(nE0,nE1)
- The BPTT algorithm to calculate weight updates is only run once per epoch (at the end

time nE1) and therefore the weights are only updated once per epoch. For all other times
nE0…(nE1-1) only the network equations 3.9 are calculated, not the training algorithm (i.e.
keep the network running but do not adapt any weights).

7UXQFDWHG�%377
An example of an approximate gradient training algorithm is truncated BPTT. To simplify the
required computation, the backward-through-time propagation of information (as defined in
equation 3.23) is truncated after a certain number of h time steps has been taken back.

The algorithm is denoted BPTT(h) where h is the number of prior time steps of which
information is used. The equations 3.23, 3.24 are used together with the truncation that can be
expressed as

h-nmfor 0)( <=mLe (3.31)

It will be shown in the next subsection that this truncation saves computation time.
5HDO�WLPH�%377
A real-time BPTT algorithm can be obtained by using E(n), the error at time n only, as the error
measure and deriving the algorithm in the same way as was done above for the epochwise
BPTT. See [Williams e.a., 1995] for more information on this algorithm.
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�������&RPSXWDWLRQDO�FRPSOH[LW\�RI�%377�DOJRULWKPV
The computational complexity can be measured in the required number of mathematical
operations (time complexity) and the amount of numbers that have to be stored (space
complexity). The computational complexity of the BPTT algorithm will be assessed in this
subsection by examining the equations. A similar comparison is done [Williams e.a., 1995].

The operations required for calculating the network equations 3.9 (not applying a training
algorithm) are not counted, as these requirements are low and independent of the training
algorithm. Also the few operations for calculating network error ei(n) from target and output,
and the number of transfer function evaluations are not counted.

The resources required by the BPTT algorithm are listed in table 3.2. For each equation
(column a) of the algorithm the number of multiplications and additions are counted (columns b
and c). The sum of both at the bottom row is the total number of operations. The amount of
required storage (space) is listed in column d. The dominating terms (for number of neurons N
>> 1) are printed in bold. The value Nw is defined as the total number of weights Nw =
(N+M)*N. The number of time steps the network is running is h = n-n0+1 for the interval [n0,n].

a b c d
(TXDWLRQ 0XOWLSOLFDWLRQV $GGLWLRQV 6WRUDJH
3.23b 2*N*h  1) - N*h

values si(m)
3.23a 1
1
K �1�����
1
K N*h

values ei(m)
3.24 � K������
1w �K���
1w N*h

values di(m)
Totals: [ 2N*N + 2*Nw +2*N] * h - 2 Nw 3*N*h

Order of
magnitude:

O[ (N2 + N(N+M))h ] O[ N*h ]

1) assumed a sigmoid transfer function: f (x) = (1+e-x)-1 Ã f �(x) = f (x)¼[1- f (x)]

Table 3.2: Computational resources required for the BPTT algorithm

In general, the total number of operations is of the order O( (N2 + N(N+M)) h ) and the storage
is of the order O(N*h). The number of operations and storage required grow linear with the time
of operation h of the network.

When targets are only defined for a fraction FT of all time steps the requirements scale down
with FT because the algorithm is not calculated when no target is defined (zero error requires no
adaptation of weights). Then the average number of operations per time step is of order O( [ N2

+ N(N+M) ] * h * FT ).
Because the ever-growing requirements over time (as h becomes large) the unmodified BPTT

algorithm is almost never used in practice. Instead truncated or epochwise BPTT is used.
The results can also be applied to the different BPTT algorithms listed in subsection 3.3.4,

epochwise BPTT and truncated BPTT. This will be done now.
(SRFKZLVH�%377
Taking the results from above, with h the epoch length h = (nE1-nE0+1) the requirements for
epochwise BPTT are obtained. Because the weight adaptation is only computed once at the end
of an epoch (i.e. once per h time steps), the order of magnitude of the mean number of
operations per time step is

O ( N2 h/h + N(N+M) h / h ) = O( N2 + N(N+M) )



3.3  Backpropagation Through Time (BPTT) algorithm for FRNN

47

If the epoch length is variable, taking for h the mean epoch length will result in the same
expression for the mean number of operations.
7UXQFDWHG�%377
The results from standard BPTT can be used to calculate the requirements for truncated
BPTT(h). The value of h now represents the number of prior time steps that are used and not
anymore the entire period of operation of the network. All information before time (n-h) is not
considered anymore so no calculations have to be done with this information and no storage is
required for it. Effectively, a semi-initial time n0� can be defined that is always set at h time steps
back (n0� = n – h) of current time n. As a consequence E(n0�,n) is minimized. The requirements
are then the same as for standard BPTT but using the semi-initial time n0� instead of the initial
time n0.

So the number of operations for BPTT(h) is of the order O( [ N2 + N(N+M) ] * h * FT ) per
time step and the required storage is O(N*h). The parameter h is however fixed in BPTT(h) and
can be chosen small for a fast training algorithm or larger to minimize E over a larger interval
[n0�,n].

�������([DPSOH
In this experiment, an electrical circuit is identified by a linear partially recurrent neural network
(PRN). The training data consists of samples of two input signals applied to the circuit and the
resulting output signal.
The circuit to be identified
An RC circuit with two inputs (voltage sources e1 and e2), one output (the voltage y = x1-x2),
two capacitors and three resistors is used. The schematic is shown in figure 2.8.
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Figure 3.3; The RC circuit to be identified

The sampled circuit can be described as a discrete-time linear state-space system with a two-
dimensional state vector:
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(3.32)

The component values are chosen as follows: R1=3100(W), R2=2320(W), R3=1300(W),
C1=8(mF), C2=2(mF). The sampling interval D = 1(ms).

The input to the circuit is a pattern of step signals. In figure 2.2 the two inputs e1(t), e2(t) and
the resulting circuit output y(t) are plotted (140 samples).
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Figure 3.4: Input signals and circuit output y(t) (140 samples)

Choice of the neural network and training procedure
The neural network used is a Partially Recurrent Network (PRN) with 2 linear state neurons and
one linear output neuron. The neurons do not have a bias. This choice is the ‘ideal’ structure
because it matches exactly the state-space representation of the sampled RC circuit. The initial
state of the neural network is set to be a vector of zeros and the weights are randomly initialised.
The neural network was trained using the epochwise BPTT algorithm. The learning rate was
chosen lr = 0.005 and the SSE performance goal 0.01 (this corresponds to a Mean Squared Error
(MSE) of 0.01/140 = 7.1¼10-5).
Results of training the network with the epochwise BPTT algorithm
In figure 2.3 a series of several results is given. Each one of the eight graphs shows the output of
the neural network after the network has been trained for the specified number of epochs. The
target is shown as a dotted line, for comparison. It can be seen that the neural network output
converges towards the target as the number of training epochs increases. The performance goal
was eventually met in epoch 4674. Note that the error could be made smaller by more training.



3.3  Backpropagation Through Time (BPTT) algorithm for FRNN

49

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 10

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 100

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 500

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 1000

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 2000

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)

 ,
 d

(t
)

Epoch 3000

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)
 ,
 d

(t
)

Epoch 4000

20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

0.6

sample

y(
t)
 ,
 d

(t
)

Epoch 5000

Figure 3.5; Neural network output (solid) and target (dotted) for several epochs of training
with the epochwise BPTT algorithm.
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In figure 2.9, Bode diagrams (amplitude and phase response) are given for both inputs (called
U1=e1 and U2=e2 in the figure) of the final neural network (solid line) as well as the response of
the RC circuit (dotted line). The plots were made using the Matlab bode function.
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Figure 3.6; Bode diagrams for the neural network (solid) and the RC circuit (dotted) for both
inputs U1/U2 ; magnitude response (upper two figures) and phase response (lower
two figures).

The Bode diagrams give magnitude and phase response for each input separately. This figure
shows the neural network has approximately learned the correct response. Errors are most
clearly visible in this logarithmic plot for input U1 at high frequencies for two reasons:

- the attenuation is large there (>30 dB) so an error of order –30(dB) does only contribute
to the (squared) SSE in the order of –60(dB).

- the input step-signals used have more low-frequency content than high-frequency
content, so it is expected the frequency response deviation will be least at the lower
frequencies.

Conclusions
It was shown in this experiment that the BPTT algorithm works for a simple linear learning
task. The convergence of neural network weights towards an acceptable solution shows that the
implementation of the algorithm is likely to be correct.

No comparison of the relative performance of the algorithm with other linear system
identification methods is intended.
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3.4  Real-time Recurrent Learning (RTRL) algorithm for FRNN

A real-time training algorithm for recurrent networks known as Real-time Recurrent Learning
(RTRL) was derived by several authors [Williams e.a., 1995]. In this subsection the RTRL
algorithm is derived for the type 1 FRNN and the Sum Squared Error as defined in equation 3.4.
First the algorithm is completely developed using the standard partial derivative notation in
subsection 3.4.1. A second approach follows in subsection 3.4.2, in which the ordered derivative
notation is used to derive the same algorithm. In subsection 3.4.3 the computational complexity
of RTRL is determined.

�������'HULYDWLRQ�RI�WKH�575/�DOJRULWKP
The RTRL algorithm starts with a simplification of the error measure. Instead of using the true
error measure ETOTAL(n0,n) an approximation is made and only the instantaneous error measure
E(n) (equation 3.1) is used for calculating weight updates at each time instant n of the
continually running network. Therefore RTRL can be categorized as a real-time algorithm. In
standard RTRL the calculated updates for the weights are applied immediately after the
calculation at each time n. But an epochwise RTRL algorithm can also be used, in which weight
updates are only applied at the end of an epoch. First the standard RTRL algorithm is
developed, then the epochwise RTRL algorithm is given at the end of this subsection.

So at every time n, the weights are adapted according to
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where h is the learning rate. With the sum squared error measure substituted we have:
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Substituting equation 3.8c of the FRNN in the partial derivative:
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The partial derivative of the neuron activation sums si(n), with equations 3.8 substituted, yields
the following results:
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where dik is the Kronecker delta function. A further simplification results because the network
inputs do not depend on the weights (�uj/�wkl = 0):
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The above equation can now be substituted into equation 3.35:
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To be able to compute the values zi(n0), initial values for yi(n0-1) must be set. These will also be
set to zero:

0)1( � =-nyL (3.39)

To be able to recursively compute equation 3.38 starting from time n=n0, the partial
derivatives �yj(n0-1)/ �wkl must be known. Because the values yj(n0-1) are fixed according to
equation 3.39 these values can not be influence by the weights. So the ‘initial’ partial
derivatives are zero:
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For ease of notation of the algorithm we first define the following variable:
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5HDO�WLPH�5HFXUUHQW�7UDLQLQJ�DOJRULWKP
1. initialize as in equations 3.40, 3.39  and set initial time n=n 0

2. calculate the N neuron output values for time n using equations 3.8
3. calculate )(nL

NOp for all i, k and l using the following equation
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which is equation 3.38 rewritten with the new definition of (.)L
NOp .

4. use the values )(nL
NOp and the present error ei(n) to calculate the weight update:
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(obtained by substituting equations 3.34 and the definition (.)L
NOp into equation 3.33.)

5. Update all weights wkl:

)()()1( nwnwnw NONONO D+=+ (3.44)

6. Increase time n to n+1 and go back to step 2
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(SRFKZLVH�5HDO�WLPH�5HFXUUHQW�7UDLQLQJ�DOJRULWKP
A small change can be made to the RTRL algorithm that results in an epochwise algorithm, that
updates the weights only after a full example sequence (epoch) in the interval [nE0,nE1] has been
presented to the network. This weight update at the end of an example is the sum of individual
calculated weight updates Dwkl(n) at each time n (that were not yet applied to wkl):
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This algorithm yields different results than standard RTRL. The continuous updating of
weights in standard RTRL implies that different weights are used for each time step in the
calculation of the algorithm. The epochwise RTRL algorithm keeps using the same weight
values throughout the epoch so numerical results will differ.

In the literature reviewed, no proofs were found whether the standard RTRL algorithm is the
fastest or not. No claims were found about the convergence of both methods (will they
eventually converge to the same result, or not).

Intuitively one would say the more frequent weight updating in standard RTRL allows faster
movement through the parameter space (i.e. weight space) and therefore convergence to a good
enough result in less training epochs.

�������'HULYDWLRQ�RI�WKH�575/�DOJRULWKP�XVLQJ�WKH�RUGHUHG�GHULYDWLYH
The RTRL algorithm can be derived using the ordered derivative. This method was also used in
[Bengio, 1996] but the derivation given in this report is a bit more clear and shows exactly when
chain rules are applied.

The reason for doing the derivation again with the ordered derivative is to show the difference
between the two approaches. Because this derivation is only for the specific case of the FRNN,
it was found to be a useful preparation for the more general form of the RTRL algorithm for
modular networks which will be treated in section 3.8.

The full derivation is given in Appendix B.2. The derivation starts with the weight update,
which can be calculated using the gradient just as in equation 3.33:
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The ordered derivative notation is now used. This means both direct and indirect influence of
wkl on the error measure is taken into account.

�������&RPSXWDWLRQDO�FRPSOH[LW\�RI�575/
The computational complexity of RTRL will be considered for a fully connected network. (A
constrained architecture will usually require less computations.) First define the total number of
weights Nw = (N+M)*N. As can be seen in equation 3.42 a number of Np = Nw*N =
(N+M)*N*N values (.)L

NOp of the previous time-step need to be stored. For this a storage space
of S=Np values is required.

The required number of operations and storage space is listed for the RTRL algorithm in table
3.3. The dominating terms (for N>>1) are printed in bold.

If we ignore the smallest terms in the total sums ( N>>1 ), it follows that the total number of
operations per time step is of order O( N3 (N+M) ) and the required storage is of order O( N2

(N+M) ). There is no saving in computational resources, if the epochwise RTRL algorithm is
used.
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a b c d
(TXDWLRQ 0XOWLSOLFDWLRQV $GGLWLRQV 6WRUDJH
3.42 (1+N+1/N) * Np  =

�1����
�1p + Nw

���1����
�1p 1p

3.43 (L+1) * Nw (L-1) * Nw M
values ei(m)

Totals: ��1���
1p +(2*L+1)*Nw 1p+M

Order of
magnitude:

O[ N3(N+M) ] O[ N2(N+M) ]

Table 3.3: Resources required for the RTRL algorithm

�������([DPSOH
The same experiment as performed in subsection 3.3.6 with the epochwise BPTT algorithm is
repeated here for the RTRL algorithm.
6WDQGDUG�575/�DOJRULWKP
With the RTRL algorithm the SSE goal was met after 786 epochs of training, which is much
faster than with epochwise BPTT or epochwise RTRL (see below). The weight updating at
every time step in standard RTRL, opposed to only once per epoch in epochwise algorithms,
clearly leads to improved performance for this task. The learning rate was set lr = 0.01. The
training record is shown in figure 3.7.
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Figure 3.7: Sum Squared Error performance over the 786 epochs of training

These results are not compared to standard BPTT because this algorithm was not implemented.
(SRFKZLVH�575/�DOJRULWKP
When the epochwise RTRL algorithm is used, the outcomes of the experiment are identical to
epochwise BPTT. (See subsection 3.3.6 for these results.)
This implies that for this task and using linear networks, the following must hold:
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for all weights wij. This relation states that the gradient calculations for epochwise BPPT (left)
have the same value for all weights as the gradient calculations for epochwise RTRL (right).

This is not the case in general. By using nonlinear neuron transfer functions and running the
experiment again it was found the property only holds for linear neurons.

3.5  Joint training algorithm for general modular network

Modular neural networks were presented in subsection 2.4.3. In this subsection it will be shown
how these modular networks can be trained.

In [Bengio, 1996] it is shown how the static modules contained in a modular neural network
architecture can be trained together to minimize a global error measure. To show why it can be
advantageous to do a joint training of network modules instead of training each module
separately, the following example situation is introduced.
:K\�XVH�MRLQW�WUDLQLQJ����
As an example consider a two-network architecture where network 2 is cascaded after network
1. The training procedure uses the gradient of network 1 �E1/�Z1 and for network 2 �E2/�Z2.
When both E1 and E2 are minimized (then �E1/�Z1 and �E1/�Z2 are zero) the training algorithm
stops, but the error measure could perhaps be made smaller by evaluating �E2/�Z1 which may
be non-zero. So the separate training of modules may yield sub-optimal performance.

It is assumed in this example that targets are known for both modules and that module 1 output
is fed to module 2 to ‘aid’ module 2 in its task (e.g. classification).
:K\�XVH�MRLQW�WUDLQLQJ����
Joint training can also be applied if not all modules of the network have targets. An example is
the state-space network (in modular description) that only has targets defined for module 2 (the
output function) and not for module 1 (the state function). In the derivation of the joint training
algorithms it will be made clear that all modules can be trained even without targets for all
modules.
%377�DQG�575/�MRLQW�WUDLQLQJ�DOJRULWKPV
The derivation of the joint training algorithm (as given in [Bengio, 1996]) is given in subsection
3.5.1. It resembles the derivation of the BPTT algorithm for FRNN so it is called the BPTT joint
training algorithm. Inspired on the RTRL algorithm for FRNN, another type of joint training
algorithm may be derived. This RTRL joint training algorithm will be derived in subsection
3.5.3.

In both subsections two special cases of modular networks are treated: the state-space network
and the FRNN. This shows that the BPTT algorithm for FRNN is in fact a special case of the
BPTT joint training algorithm. The RTRL algorithm for FRNN is a special case of the RTRL
joint training algorithm.
$OWHUQDWLYH�GHULYDWLRQ�RI�WKH�%377�DQG�575/�DOJRULWKPV
In [Baldi, 1995] the BPTT and RTRL algorithms are derived in another way without using the
modular description for neural networks. The model used by Baldi intends to be an even more
general description than the modular network framework, since it includes continuous-time
neural networks. The derivation shows the RTRL algorithm is a straightforward solving
procedure (using numerical integration) for a dynamic system trajectory-following problem.
The BPTT algorithm corresponds to a solving procedure for the adjoint dynamic system for the
same problem. Unfortunately, there was no time left to study this approach and include it here.
This is no real problem, since only time-discrete networks are considered in this chapter and the
modular network framework is sufficient for this purpose.
'HILQLWLRQV
The definitions of a modular network as given in subsection 2.4.3 for l , p(l) , s(l) , d(l) , \i(n),
yim(n), and Li are used throughout this section.
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�������7KH�%377�MRLQW�WUDLQLQJ�DOJRULWKP
The gradient of the cost function

),( �� nnEE = (3.48)

for a certain training sequence p in time interval [n0,n1] can be used to adjust all weights j in
module i, qij , as follows:

LM
LM

nnE
qhq �

�-=D + ),( �� (3.49)

where �+../�.. denotes the ordered derivative (see section 3.3). Applying the first chain rule for
ordered derivatives is the next step:
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The first term is zero because the error measure E is only influenced by the parameter qij
indirectly through all variables yim(n) (over all outputs m=1…Li and over all times n=n0…n1). In
this equation the second term depends on the definition of the module )i(.). The first factor can
be decomposed again using the first chain rule:
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where the set Pi = { l | p(l)=i } denotes all links that come from module i. The first direct
derivative term is the direct influence of yim(n) on the error measure. It is zero when there is no
supervision (no target values are defined) on a module. It can be seen in the second term that
any indirect influence of yim(n) on the error measure is exercised through the ‘future’ output
vectors \s(l)(n+d(l)) of all modules s(l) that are connected as a successor of the module i.

The equation is similar to the one found for the BPTT algorithm for FRNN (equation 3.22) but
more general. The procedure, of recursively computing equation 3.51 in a backward pass and
computing equation 3.50 in a forward pass, is essentially the same as in the BPTT algorithm for
FRNN.

By taking a specific modular network architecture the equations can be further developed and
a BPTT-like training algorithm results to train the parameters of all network modules. This will
be done next, for the two special cases of the modular network framework from subsection
2.4.3: the FRNN and the state-space network architecture.
6SHFLDO�FDVH����WKH�)511
The BPTT training algorithm for the Fully Recurrent Neural Network can be derived as a
special case of the BPTT equations of joint training for modular networks.

For convenience, the description of a FRNN in terms of the modular network framework is
repeated here (it was also given in subsection 2.4.3). The FRNN is defined as a single-module
network having one link that connects the module output to its input. See figure 3.8.
In the general case, the module can contain any n-layer neural network. By constraining the
module to a single-layer network, the special case of a FRNN is obtained.
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Figure 3.8; FRNN presented as a single module network with one
delayed recurrent connection

The single-layer static feedforward network module 1 has N neurons which are all considered
external outputs, M+N external inputs and as parameters the weights q1=Z1={w1jk}. This static
network does the following computation for every neuron j:

ßà
ÞÏÐ

Î -=
¼=

)(
)1(

)(with  

))(()(

n
n

n

nn

�

�
�

����

X
\]
]Z)\

(3.52)

and in scalar notation:
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where z1k(.), the inputs of module 1, are the elements of the input vector ]1(n).
There is only one module so i=1. The number of outputs for this module is L1=N. Equation

3.50 is used with the weights w1jk substituted as the parameters q1j and using L1=N:
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because the last term is only non-zero when m=j the sum over m disappears:
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Next equation 3.51 is used for writing out the first ordered derivative term �+E/�y1j(n) in the
equation above. For the only link l=1, both the predecessor and successor is module 1,
s(1)=p(1)=1, and the delay in the link is one, d(1)=1.
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Because there is only one module, there is no need to give the module 1 variables the explicit
subscript “1”. So new variable names ym(n) � y1n(n) and wjk � w1jk are defined, that will be used
for the final notation of the obtained algorithm. With the new definitions, equation 3.55
becomes:
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which is equal to the BPTT equation 3.21. With the new definitions, equation 3.56 can be
written as:
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This equation is equal to the BPTT equation 3.22 for FRNN. From here on, the rest of the
derivation is identical to that of the BPTT algorithm for FRNN if the Sum Squared Error
measure is used. Therefore, it will not be shown here again. The derivation could also be
continued using a different error measure.
6SHFLDO�FDVH����WKH�JHQHUDO�VWDWH�VSDFH�QHWZRUN�DUFKLWHFWXUH
As shown in subsection 2.4.3, the general state-space network architecture can be described as a
modular network. Using the general equations for joint training of modular networks the BPTT
training algorithm will be derived for the state-space network.

For convenience, the modular network description is shown again in figure 3.9.

Figure 3.9; General state-space network shown as a two-module network with
two links



3.5  Joint training algorithm for general modular network

59

The ordered derivative used for the parameter adaptations is given by equation 3.50 (repeated
here for convenience):
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For module 1 equation 3.51 is developed with link 1 the self-recurrent link (p(1)=1; s(1)=1;
d(1)=1) and link 2 the link to the second module (p(2)=1; s(2)=2; d(2)=1):
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For module 2 equation 3.51 is also developed. Since this module has no links going from it:
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Substituting equation 3.61 into equation 3.60, and using the fact that there is no supervision on
module 1 ( �E / �y1m(n) = 0 ), the expression for module 1 becomes:
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This equation can be computed recursively in a single backward pass. Further development of
the partial derivative terms �y..(n+1)/�y1m(n) is possible when the static network module
structures are known in more detail. The instantaneous error terms �E/�y2q(n) can be developed
further when a specific error measure is chosen.

�������([DPSOH��+pQRQ¶V�V\VWHP
In this example a state-space network is used to identify the nonlinear Hénon’s system.
+pQRQ¶V�HTXDWLRQV
The discrete-time nonlinear system is described by the following set of equations known as
Hénon’s equations [Janssen, 1998].
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(3.63)

Although not given in the state-space form, they can be rewritten to a state-space system. The
parameters are usually chosen a=1.4 and b=0.3. The system then generates a chaotic signal
shown in figure 3.10 for the initial conditions x(0)=0, y(0)=0.
([SHULPHQWDO�VHWXS
The Hénon’s time series was used in [Janssen, 1998] to show the capability of a Time-Delay
Neural Network to approximate an unknown nonlinear dynamic system. In that experiment,
5000 samples of the Hénon time series were used to train a network containing 48 weights.
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Figure 3.10: Hénon’s time series (First 100 samples)

The experiment is repeated now for a nonlinear recurrent state-space network. The goal of the
experiment is to train a neural network to predict the next sample y(n+1), when supplied with
only the current sample y(n). Past information is summarized in the state of the neural network.
The following neural network structure (named ‘N1’) was used first:

- module 1: 2-layer network ; 5 nonlinear hidden tansig (tangential sigmoid transfer
function) neurons ; 3 linear output (state) neurons

- module 2: 2-layer network ; 5 nonlinear hidden tansig neurons ; 1 linear output neuron

The total number of weights is 84. A much smaller training set than used in [Janssen, 1998] was
used, 300 samples. The epochwise BPTT algorithm (the bptt_epoch algorithm) was used
combined with adaptive learning rate but no momentum learning (the traingda training
function). The SSE goal was set to 0.1. (This implies a Mean Squared Error of 0.1/300 = 3,3*10-

4.)
In a second run, a smaller neural network ‘N2’ was chosen:

- module 1: 2-layer network ; 4 nonlinear hidden tansig neurons ; 2 linear output (state)
neurons

- module 2: 2-layer network ; 4 nonlinear hidden tansig neurons ; 1 linear output neuron

The total number of weights was 47 in this case, one less than the FIR network in [Janssen,
1998].
5HVXOWV�RI�WUDLQLQJ�QHWZRUN�1�
After 9000 epochs of training network N1, the SSE performance goal was met. To get a visual
impression of the system the neural network has identified, two plots are shown in figure 3.4
that show the relationship between the current sample x(n) and the previous sample x(n-1) for
both the original Hénon’s system and the trained neural network. This type of plot visualizes the
so-called attractor of the system. It can be seen the neural network attractor plot resembles the
Hénon attractor plot.

In figure 2.12, the Hénon time series and the neural network prediction are shown for the 51
samples 4000-4050.

These samples were not used to train the network. They constitute an independent test set. It
can be seen the network can predict the Hénon samples with good accuracy. The Mean Squared
Error for this subsection is 5*10-4

 , counting from sample 4002. (The first two are not counted
because two samples must be known in the system equation 3.63 to be able to make a
prediction). The MSE is slightly higher than the MSE for the training sequence.
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Figure 3.11;The neural network attractor plot (left) and the Hénon attractor plot (right)
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Figure 3.12; The Hénon time series (dotted) and its neural network
prediction (solid) for the test samples 4000-4050.

5HVXOWV�RI�WUDLQLQJ�QHWZRUN�1�
The training was repeated with the (smaller) network N2. After 10000 training epochs, the SSE
goal was still not met. Training was stopped and the SSE did come close to the goal, at SSE =
0.18. So the MSE for the test sequence (samples 4002-4050) was a bit higher, MSE = 7*10-4.
&RQFOXVLRQV
In this experiment, the state-space neural networks trained with the BPTT algorithm were able
to find a representation of (to identify) the nonlinear Hénon’s system. The training set used was
relatively small compared to the number of weights in the networks. Note that a comparison of
these results with other ones (e.g. [Janssen, 1998]) for the Hénon problem is not intended. For
this, a comparable experimental setup should be used and several runs per setup.

It can be concluded that the BPTT algorithm works for the two-module two-layer state-space
neural network used.
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�������7KH�575/�MRLQW�WUDLQLQJ�DOJRULWKP
Another algorithm for joint training of modular networks can be obtained inspired on the RTRL
algorithm for FRNN. This RTRL joint training algorithm will be presented here. The ordered
derivative notation is used because it allows easy notation of the algorithm as was found in
Appendix B.2. An instantaneous error measure E(n) is used as was done previously for the
RTRL algorithm for FRNN. The weight updates for parameters j in all modules i are then given
by:

LM
LM

nE
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�-=D + )(
(3.64)

In the derivation of the BPTT joint training algorithm the first chain rule for ordered
derivatives was used to develop the weight update expression. For deriving the RTRL joint
training algorithm the second chain rule for ordered derivatives is used:
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The set D’ holds all modules whose outputs have targets defined (these outputs are the ones
used in calculating the error measure). All modules k that are not in D’ have �E(n)/�ykm(n) = 0
for all m. Now for each module k in D’ the first partial derivative �E(n)/�ykm(n) can be obtained
directly from the error measure. The last term is developed further using the second chain rule.
Because the current outputs at time n are influenced indirectly (through the links l) by all
outputs of all modules at times n-d(l) that have a link going to module i, we have:
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(3.66)

The set Sk = { l | s(l) = k } denotes all links that go to module k, and dik is the Kronecker delta
function. The ordered derivative term can be computed recursively using the above equation, by
saving all values

LM

TOS ldny
q�

-�+ ))((��� (3.67)

of the ‘previous’ time steps n-d(l). The first two partial derivative terms in equation 3.66 can be
developed if the structure of the static network modules is known in more detail.
6SHFLDO�FDVH��DQ�575/�DOJRULWKP�IRU�WKH�JHQHUDO�VWDWH�VSDFH�QHWZRUN�DUFKLWHFWXUH
The general equations for the RTRL joint training algorithm are now developed for the special
case of a two-module state-space neural network. The Sum Squared Error measure of equation
3.1 is used:
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with ei(n) as defined in equation 3.2 but now with d2i(n)=di(n) (i.e. the targets on module 2 are
the targets on the external output) and yi(n)=y2i(n) (i.e. the module 2 outputs are the external
outputs). So we have:
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Equation 3.65 now yields:
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where D� = {2} because of supervision on module 2 only.
Module 1 equations
For module 1 (i=1) equation 3.66 is developed with link l=1 the self-recurrent link (p(1)=1;
s(1)=1; d(1)=1) and link 2 the link to the second module (p(2)=1; s(2)=2; d(2)=1):
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Here the second equation can be computed recursively and the first equation can be computed
using the result of the second equation.
0RGXOH���HTXDWLRQV
For module 2 (L=2) equation 3.66 yields with link 2 the link to this module (p(2)=1 ; s(2)=2 ;
d(2) = 1):
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The last equation must be zero, which is known beforehand, because the parameters of module
2 cannot influence in any way the outputs of module 1 (There is no link from module 2 to
module 1). Of course the same result is obtained when the last equation is actually calculated
and an initial condition of zero is taken for the ordered derivative term. This is not shown
further here.

The above equation simplifies equation 3.73 to:
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To write the algorithm down in a convenient way, the following variable is defined:
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Now the above equations 3.71, 3.72 and 3.75 respectively are rewritten using this definition,
which yields the RTRL algorithm for a general state-space network architecture:
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Finally the update of parameter�M� for module�L�is calculated using equations 3.64/3.70. Using
the newly defined variable p this can be written as:
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The RTRL algorithm for state-space networks is hereby derived. For specific choices of neural
network modules, the terms �y../�y.. and �y../ �q.. can be further developed.

3.5.4  Example: Hénon’s system

The identification task of the Hénon system (subsection 3.5.2) was repeated for the RTRL
algorithm. The learning rate was chosen lr = 0.1 initially. The learning rate was steadily
decreased by multiplying with a factor 0.995 each epoch. This learning rate decreasing schedule
was to ensure fast training initially and to have smaller weight adaptations later on, when the
finer details of the training data had to be learned.

The performance goal SSE = 0.1 was met at epoch 210, much faster than with epochwise
BPTT. The epochwise RTRL algorithm was not tried because of long simulation running times.

3.6  Extensions of training algorithms

There are many interesting extensions that can be applied to the standard training algorithms. In
this section some of these are presented. First it is shown (subsection 3.6.1) how the epochwise
BPTT algorithm can be easily combined with training algorithms for static networks using theYLUWXDO� WDUJHWV description. In subsection 3.6.2 the technique of WHDFKHU� IRUFLQJ is introduced,
which is a simple modification often used during recurrent network training.

3.6.1  Using virtual targets in the BPTT training algorithm

A useful property of the BPTT training algorithm is that it allows the calculation of YLUWXDOWDUJHWV for certain neurons� N� in the network that do not have a real target dk(Q). This will be
shown first and then the application of virtual targets in a training procedure will be explained.
The terms YLUWXDO� HUURU� and YLUWXDO� WDUJHW� can also be found in [Williams, 1995]. There, the
terms are introduced for more insight into the BPTT algorithm.
Definitions of the modular neural network BPTT training algorithm
The equations of the (very general) modular network architecture together with BPTT joint
training from section 3.8 are used. When the following variable is defined:
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and when equations 3.49 and 3.50 are combined, the weight update for weight�M�of a module�L
can be written as:
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The term eim(Q) will be called the YLUWXDO�HUURU because it is an error term that in general is not
equal to the instantaneous error on the outputs:
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This follows from equation 3.51. A virtual error can exist even if the ‘real’ instantaneous error is
zero. To show the relation between the BPTT training algorithm and the backpropagation
training algorithm for static neural networks, the equations for the static neural network training
gradient descent algorithm with backpropagation will be given first.
Definitions of the static neural network training algorithm
In this text it is assumed that static networks L inside a modular network are trained DV�LI�they are
just separate static neural networks. So each static neural network is a module� L�of a modular
neural network. For all weights qij of this static network the weight update can be calculated,
when a pattern p is presented to the network and gradient descent training with backpropagation
training [Veelenturf, 1995] is used. Each pattern p is in this case a single vector and QRW a
sequence (as in the recurrent network). The error measure for a static network is calculated per
pattern so it is denoted Ep. The weight update after presenting pattern p can be calculated as
follows:
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when the error measure used is the SSE:

)())()(( �� SHS\SG( LPLPLPS =-= (3.85)

where yim(p) are the network outputs, dim(p) the targets on the outputs, and eim(p) the network
output errors, all for a certain pattern p. Now equation 3.84 can be written as:
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When batch-mode training is used [Veelenturf, 1995], the weight updates are applied only
after all Np patterns p have been presented. So this weight update is the sum of individual
pattern updates:
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Using virtual targets in the BPTT training algorithm
Now it will be shown that the following training procedures are equivalent:

- training the modular network with epochwise BPTT
- training each static module with standard gradient descent backpropagation ; using virtual

errors instead of the instantaneous errors

The first procedure was given in section 3.5.1. The latter procedure is now explained. The
values of the virtual errors eim(Q) are needed. These can be obtained by the BPTT algorithm by
first simulating the network for the current sequence and second, calculating the virtual error
terms (equation 3.81) by the BPTT backward pass of equation 3.51.

The inputs uim(.), Yim(.) and the outputs yim(.) of the modular recurrent network over time
interval [n0,n1] (the current sequence) are then converted to a set T containing NP = n1-n0+1
training patterns as follows:
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in other words, by taking p = Q� with Q� = Q-n0+1 and Q=[n0,n1]. Now this set is used in a
standard gradient descent training procedure for the static network modules, by using the set T
and the static network training algorithm of equation 3.87. This yields:
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The last expression is equal to the BPTT training equation 3.82. Therefore a standard gradient
descent training procedure using the ‘training’ set T is equivalent to applying epochwise BPTT
over epoch [n0,n1].

The set T can not reasonably be called a training set, because a training set only supplies
inputs and targets. To achieve a proper training set, the set T is converted to a real training set T�
by using the following conversion instead of equations 3.88:
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The targets dim(p) are calculated using the virtual error e, so these are called ‘virtual targets’.
The set T� provides the input patterns and targets for use in the static neural network training
procedure (equation 3.87).
Applications of the virtual targets BPTT algorithm
The reason for calculating virtual targets, is that any existing neural network training algorithm
for static neural networks can be invoked whenever input and target values are known. And they
are known, if the above virtual targets procedure is followed. This way different existing
algorithms for static neural networks can be re-used in combination with the BPTT algorithm.

The virtual targets algorithm was in this report only used to numerically verify the gradient
calculation routines of the ModNet state-space neural network toolbox against existing Matlab
routines for static networks (see appendix E).
Disadvantages
A disadvantage of the virtual targets procedure is that most neural network sums, output values
and gradients are calculated twice: one time in the BPTT procedure for obtaining the virtual
errors and the second time in the existing standard gradient descent training algorithm. The
values calculated in the BPTT algorithm could of course be passed to the existing static gradient
descent algorithm, but most of these algorithms only accept only inputs and targets and they
calculate all other needed variables again.

But this disadvantage can be easily avoided by slight modifications of the existing algorithm
code. This approach was used successfully for creating the Levenberg-Marquardt algorithm in
the ModNet toolbox, see appendix E.

Another disadvantage is that virtual errors/targets are only locally valid. Locally valid means:
valid only for weight vectors that lie in a small neighborhood around the weight vector q i . Hereqi is the weight vector used when the virtual error was calculated (using equation 3.81).

If the weights change (this happens after a weight update) the virtual error will generally be
different. Therefore virtual targets can not be used to repeatedly train network modules for
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several epochs, because the thereby accumulated weight changes are too large for the virtual
targets to remain valid.

3.6.2  Teacher forcing

The technique of WHDFKHU� IRUFLQJ has appeared several times in research on recurrent neural
networks (according to [Williams e.a., 1995]). Teacher forcing is to replace, during training, the
actual output yk(Q) of a neuron by the teacher signal dk(Q) which is the target for output N. One
effect of forcing the output yk(Q) to the target value, is that the situation of ‘correct performance
of the network on all earlier time steps’ is artificially created, even if the network performance
was in fact not correct on earlier time steps. This may lead to a better training performance on
the current time step, so that in total a network can be trained quicker.

Note that this form of teacher forcing can only be applied to recurrent network outputs that
have targets. Examples are the FRNN where teacher forcing can be applied to outputs 1…L
only and the NARX network architectures where teacher forcing can be applied to all outputs.
Teacher forcing can not be applied to state-space networks, because then none of the recurrent
network outputs have targets. Teacher forcing is explained in much more detail in [Williams
e.a., 1995] together with the modifications of training algorithms that are needed.

It should be noted that teacher forcing is a term used in neural network research whereas the
same kind of setup is called RSHQ�ORRS�control (or  -identification)�in control theory.
Weighted teacher forcing
Weighted teacher forcing [Weigend, 1996] is a modified form of teacher forcing. The network
outputs yk(Q) are not fully replaced by the targets dk(Q) but partially, depending on a variable l:

)()1()()(� Q\QGQ\ NNIRUFHGN ¼-+¼= ll  (3.91)

The variable l can be fixed or it can be varied (even during training) to emphasize learning of
correct short-term behavior (for l close to 1) or to emphasize learning of correct long-term
behavior (for l close to 0).

3.7  Other training algorithms

In this subsection some training algorithms will be mentioned that were not discussed
previously in this chapter. References will be given to literature about these algorithms. Because
the number of training algorithms to be found in literature is large, they can not all be discussed
in this report.

3.7.1  Matlab/Elman backpropagation algorithm

A simple training algorithm called ‘Elman backpropagation’ is used in the Matlab neural
network toolbox to train recurrent neural networks.

In the Elman algorithm the recurrent neural network is effectively considered to be a static
neural network wherever possible (static but QRW unfolded in time). The inputs arriving from
delay registers are simply considered external inputs. This is standard backpropagation widely
used for static neural networks.

But not all recurrent networks can be trained with this approach. For example neurons that do
not have targets defined (i.e. state neurons) cannot be trained using the standard
backpropagation approach.

Elman backpropagation solves this problem by backpropagating the error from a neuron that
does have a target, ‘through’ the delay registers, to the neuron that does not have a target. This
process is visualized in figure 3.13. The four-neuron example FRNN is shown, but for visibility
not all connections are shown except the connections through which the error of neuron 1, e1(n),
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is backpropagated to neuron 3 that does not have a target defined. The backpropagation of the
error is shown with five arrows.

)LJXUH�������%DFNSURSDJDWLRQ�RI�HUURU�RI�QHXURQ����ZLWK�D�WDUJHW���WR�QHXURQ����ZLWKRXW�WDUJHW�
This algorithm is further described in Appendix B.3 for the case of a FRNN. It is shown there,

the Elman algorithm can be described as a ‘truncated’ form of the epochwise RTRL algorithm
for FRNN.

3.7.2  A hybrid BPTT/RTRL algorithm

An interesting BPTT/RTRL hybrid training algorithm is described in [Williams e.a., 1995] that
is computationally efficient and combines some elements of both approaches. The hybrid
algorithm consists of the following:

- a parameter K defines the mix between BPTT and RTRL
- the RTRL gradients are updated every K time steps (instead of each time step)
- this update is computed using computationally efficient truncated BPTT(K� over K time

steps.

The benefits are:
- the number of (less efficient) RTRL computations is reduced, compared to standard

RTRL
- the required computations does not grow with the time of network operation, as in

standard BPTT
- no partitioning in epochs is needed, as in epochwise BPTT.

See [Williams e.a., 1995].

3.7.3  Kalman filter

In [Haykin, 1998] an unusual approach to training recurrent neural networks is presented. In this
approach, Kalman filter theory is used to determine the weights of the network. First, the
nonlinear neural network is linearized around the current weight vector. Now linear Kalman
filter theory can be applied to this system, to provide optimal iterative estimates of the best
weight vector.
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Standard gradient descent does not use information obtained in the past to ‘estimate’ the next
weight vector but only the last calculated gradient. Some properties of this Kalman filter
approach to neural networks are:

1) the first-order linearization of the nonlinear network is done using the neural network
gradients. This way, the Kalman filter algorithm can use any other gradient-based
algorithm for its first calculation step.

2) it requires more computations than a normal gradient-based algorithm because the
Kalman filter equations have to be calculated after the gradients [Haykin, 1998].

3) performance is reported to be better than normal gradient-based algorithms [Haykin,
1998].

BPS algorithm
Backpropagation for Sequences (BPS, see [Bengio, 1996]) is an example of an algorithm for
SRN structures. It is a special case of the BPTT algorithm that only applies to the specific case
of SRN with self-recurrent context layers. Because of this constraint the algorithm can however
be computed quickly.

3.8  Conclusions

In this section some aspects of training algorithms are compared. As no benchmarking
experiments (comparing performance on specific problems) were performed the conclusion on
training algorithms will be based on theoretical grounds.

3.8.1  Comparing the BPTT and RTRL training algorithms

The fundamental difference between the BPTT and RTRL algorithms
The fundamental difference between the (epochwise) BPTT and RTRL algorithms can be best
expressed in the following way. While the BPTT algorithm will try to perform the
minimalization of the error over a sequence:

ßà
ÞÏÐ

ÎÊ
Q

Q( )(min
Z
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the RTRL algorithm will try to perform the minimalization of individual error terms of a
sequence: [ ]Ê
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Z

(3.93)

with the intention that 3.93 will approximate 3.92. Obviously the first expression is always less
than or equal to the second expression. Epochwise BPTT is therefore expected to be at least as
good or better in performance than epochwise RTRL.
Differences in resources required for FRNN
From the analysis of computational complexity of BPTT and RTRL performed in this chapter
for FRNN, it follows that RTRL requires much more computations for ‘large’ N because the
requirements scale up with N4 as opposed to N2*K for BPTT.

For highly parallel implementations of the algorithm, the number of required computations is
much less an issue and RTRL may be a good choice then even for large N. For simulations on
serial computers, BPTT quickly becomes the algorithm of choice as the following example will
make clear.
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([DPSOH
In a possible phoneme recognition problem, a speech signal short time spectrum is determined
at 10 (ms) intervals and phoneme duration is less than 160 (ms) 1 for about 95% of phonemes. It
follows K = 0.160/10-3 = 16 previous spectral samples matter in the classification of a phoneme.
Therefore truncated BPTT(h) (K=16) can be used. This algorithm is quicker than RTRL for N �
4 neurons. This number of neurons will be likely, because N=3 is not considered a very big
network.
Differences in resources required for other networks
For the many other networks than FRNN, no exact resource calculations were done. The FRNN
was taken as a ‘typical’ case because it can be often found in literature.

In [Baldi, 1995] the BPTT and RTRL algorithms are derived for a very general dynamic
system description of neural networks. The computational requirements are also listed and turn
out to be typically of order O(N2) for epochwise BPTT and O(N4) for RTRL in dense networks
(i.e. fully connected), where N is the size of the state vector. These results are the same as for
the FRNN.
Differences in application
As its name implies the RTRL algorithm is best suited for real-time applications where online
training is needed. The reason for this is that the algorithm always adapts to minimize the error
E(Q) on the latest sample that is available. This way, the system will always be adapted best to
the latest data which is desired in a problem with non-stationary data sources. For this type of
real-time applications a RTRL trained nonlinear neural network can provide a nonlinear
alternative to a linear adaptive filter. Of course truncated BPTT and real-time BPTT can also
serve for this purpose.

Epochwise BPTT is most suited for applications with offline training (for example speech
recognition) when data is available offline, partitioned into separate epochs. The data source is
now supposed to be stationary. (If the data source wouldn’t be stationary, then collecting data
for future uses would be of no use at all.)
RTRL adapts to the latest data
From the above remarks on (standard) RTRL it can be concluded that RTRL always adapts to
the latest data available. During the first experiments with RTRL it was indeed found that neural
network trained with RTRL performed well on the last part of a training sequence and already
started to ‘forget’ the weight updates for the first part of a training sequence which was
presented earlier. As a consequence performance on the first part of a sequence was worse than
performance on the last part.
Epochwise BPTT is identical to epochwise RTRL for linear neural networks
It was experimentally found in subsection 3.4.4 that for the case of a linear neural network, the
epochwise BPTT algorithm yields the same numerical results as the epochwise RTRL
algorithm. It was already stated that the following relation must hold for linear networks:
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It would be interesting to find out analytically why this holds for linear networks, because it is
not the case in general.

3.8.2  Matlab implementation of BPTT and RTRL algorithms for state-space
networks

In chapter 2 it was concluded the state-space neural network architecture should be further
investigated. The BPTT and RTRL training algorithms were derived for this network. It was

1 Average phoneme length was measured over 30 sentences in the Timit database using the Timit Tools
toolbox (see Appendix D.2)
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noted that the state-space architecture describes several other network architectures when certain
restrictions are imposed.

For these reasons the state-space network was chosen to be implemented in Matlab. Both the
BPTT algorithm (epochwise) and the RTRL algorithm (continuous and epochwise) are
implemented. It was not very difficult to add the BPTT algorithm, once the RTRL algorithm
training functions were implemented.

All functions are in a toolbox which is called the 0RG1HW�toolbox (the name refers to modular
network). Details about the implementation of the algorithms in the ModNet toolbox can be
found in Appendix E.

The modular network description of the state-space network (see subsection 2.4.3) was used as
a guideline behind the design of the ModNet code (e.g. in the function hierarchy and some
variable names). These choices even allow the code to be straightforwardly extended, such that
all architectures of the general modular network framework can be trained and simulated.

 The extension to a general implementation of the modular network framework was however
not  opted for, because it would have been very slow when written in Matlab code. Instead the
code was optimized for the state-space architecture alone. A general modular toolbox would be
feasible if the code had been written in a faster language (like C). This was found by comparing
the speed to that of the FIR toolbox written in C.

Also as an additional test a very small program was created that simulates a FRNN in C. It ran
1000 times faster than the corresponding Matlab code.

Previously it was assumed a general modular network toolbox would be very complicated to
code in Matlab. As it seems now, such an implementation would be feasible in Matlab but the
resulting code would be too slow to be of much use.
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CHAPTER 4 PROPERTIES AND CLASSIFICATION CAPABILITIES
OF RECURRENT NEURAL NETWORKS

Some general properties of recurrent networks are considered first in section 4.1. The
classification capabilities of recurrent neural networks are examined in section 4.2. Section 4.3
looks at some of the choices that can be made in a classification system. The conclusions of this
chapter will be summarized in section 4.4.

4.1  General properties

The issues that will be discussed:
- stability (4.1.1) ;
- the vanishing gradients effect in recurrent network training (4.1.2) ;
- controllability and observability (4.1.3) ;
- approximation properties of state-space networks (4.1.4) ;
- approximation properties of the FRNN (4.1.5) ;
- relation between recurrent networks and Turing machines (4.1.6);
- state-space model versus input-output model (4.1.7).

4.1.1  Stability of recurrent neural networks

As recurrent networks are dynamic systems, there is the chance of instability of these systems.
Some remarks are made here on the stability of neural networks and references are given to
appropriate literature.
BIBO and BIBS stability for linear state-space networks
The issue of stability is first examined for the case of a linear state-space network architecture.
When the system output y remains bounded for all bounded inputs u the system is said to be
Bounded Input Bounded Output (BIBO) stable. When the state x is bounded for every bounded
input u the system is Bounded Input Bounded State (BIBS) stable.

Linear state-space neural networks obey the following general linear system equations:
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Here G(x,u) is bounded only when both inputs x and u are bounded. We assumed the input u is
bounded so the state x remains a possible cause of instability. To guarantee BIBO stability of
the linear system a sufficient condition is that the system is BIBS stable. In this case the state x
is bounded (i.e. F(x,u) is bounded).

A sufficient condition for BIBS and thus BIBO stability for linear systems is that all
eigenvalues li of the matrix A have |li| < 1 [Kwakernaak e.a., 1991]. This can be easily
assessed.
BIBO and BIBS stability for nonlinear state-space networks
Most neural networks used in applications are nonlinear. In these cases BIBO/BIBS stability is
not an issue because in any practical neural network there is always a layer of neurons that has
bounded nonlinear transfer functions in both the F and G neural networks. This guarantees
boundedness of F and G for all input.

All configurations for which G (x,u) is a bounded function of the inputs are always BIBO
stable, because the output is bounded for DQ\� input. This category includes all neural network
architectures with at least one layer of neurons having bounded neuron activation functions
inside the G function. Note that all common nonlinear neuron activation functions are bounded.
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All configurations for which F(x,u) is a bounded function of the inputs are always BIBS
stable, because the state is then bounded for DQ\�input. Again, all neural network architectures
with at least one layer of neurons having bounded neuron activation functions in the F function
are BIBS stable.

So BIBO and BIBS stability in a nonlinear network can be easily guaranteed. The problem is
that other types of instability (typical for nonlinear systems) can still occur. An example of
instability is a system that starts an endless oscillation that does not stop, whatever input is
applied.
Stability of nonlinear networks
For nonlinear networks, other definitions of stability are needed, which assess the local stability
of the autonomous dynamic system around an equilibrium state. The equilibrium state can beXQLIRUPO\� VWDEOH� (also called: VWDEOH), FRQYHUJHQW�� DV\PSWRWLFDOO\� VWDEOH� (both stable and
convergent), JOREDOO\�DV\PSWRWLFDOO\�VWDEOH�� XQVWDEOH�(if it is not stable) � The exact definitions
can be found in [Haykin, 1998].

The stability of an equilibrium state can be proven for all linear systems and some nonlinear
systems. Mathematical tools for this are [Haykin, 1998]:

- OLQHDUL]DWLRQ� RI� WKH� QRQOLQHDU� V\VWHP. A nonlinear system can be linearized, then the
stability can be assessed by calculating the A matrix of the linearized system (the
Jacobian). The linearization is only valid locally, so only ORFDO�VWDELOLW\�can be assessed.

- 7KH�ILUVW�DQG�VHFRQG�PHWKRGV�RI�/\DSXQRY��These methods can prove global stability of a
dynamic system in some cases.

How to ensure recurrent network stability
The above methods can be used to assess the stability of recurrent neural networks [Haykin,
1998]. Lyapunov is used in [Lewis e.a., 1999] to guarantee stable neural network systems which
are always based on the input-output system model. The linearization approach is applied to a
state-space network in [Zammareno e.a., 1998] but only proves local stability.

For dynamic Hopfield neural networks, application of the Lyapunov methods is known to be
possible when the weight matrix is chosen to be symmetric thereby ensuring global stability of
the network [Hertz e.a., 1991]. This symmetry condition is a severe constraint on the neural
network structure.

So methods that guarantee global stability of the network require extensive modifications or
restrictions on the network structure.
Stability in neural networks for classification
The stability requirement is of vital importance when neural networks are used in dynamic
system control problems. In classification applications however, stability issues are often
ignored because it is very unlikely that an unstable neural network is doing a good classification
job. Certainly, during training each iteration produces a slightly different neural network and it
seems reasonable that many unstable networks are among those. But since the training
algorithm will seek a network that is adequately classifying, networks that become unstable
given the training data will not likely be the final result of training.

However, there is the danger that a network is stable given the training data, but becomes
unstable when new input data is supplied. This possibility does not seem to be considered in
literature on classification experiments using recurrent networks. It is also not further
investigated in this report because this danger was recognized at a late stage of the project.

Therefore, more research on recurrent network stability may be needed.

4.1.2  Vanishing gradients problem in recurrent network training

In training recurrent neural networks a problem called the YDQLVKLQJ� JUDGLHQWV� SUREOHP can
occur. It is cited as an important restriction on training of recurrent networks [Bengio, 1993,
1994, 1996] [Haykin, 1998]. The problem occurs in training tasks where a recurrent neural
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network should be trained with backpropagation (e.g. BPTT) to produce a desired response at
the current time, depending on input data that was applied in the distant past.

In these kind of tasks a recurrent network should be able to store information for extended
periods of time without losing it. This is defined in [Bengio, 1994] as UREXVW� ODWFKLQJ� of
information in the presence of noise on the network inputs.

It is shown by Bengio that in such a setting, either:
- the network does not robustly latch information in presence of noise on the input ; or
- the network is unable to learn long-term dependencies (i.e. relations between current

targets and distant past inputs)

Measures against the vanishing gradients problem
In [Lin e.a., 1998] it is shown the problems regarding the learning of long-time dependencies
with recurrent networks can be alleviated by introducing recurrent neural networks that have a
higher order of embedded memory.  A simple example is adding delay elements to a network
that delay by 10 time steps (with the original network having only single time step delays). The
same solution was noted in [Hertz e.a., 1991].

The use of linear feedback neurons [Mozer, 1995] may be another way to overcome the
vanishing gradients problem. More possible solutions, that make changes to the training strategy
rather than the network structure, are given in [Haykin, 1998] and [Bengio, 1993, 1994].

The approaches mentioned were not further investigated.
Conclusions
In this report not much attention is paid to the vanishing gradients problem (only references to
relevant literature are given). It was not thoroughly studied, because the type of neural network
learning task that requires the latching of information over long (or even arbitrary) time spans is
mostly found in the field of Finite State Machine (FSM) simulation and identification.

In a task like speech recognition the time span of input-data/target dependencies is relatively
short.

4.1.3  Controllability and Observability

The definitions of FRQWUROODELOLW\� and REVHUYDELOLW\�of a dynamic system can be found in most
books on dynamic systems e.g. [Lewis e.a., 1999] and also in [Haykin, 1998]. For this reason,
this subject will not be elaborated here. These concepts are also not used further in this report.

4.1.4  Approximation properties of the state-space network model

The state-space neural network can approximate any state-space system
The following theorem on the function approximation properties of static MLP will be used.

8QLYHUVDO�$SSUR[LPDWLRQ�7KHRUHP�[Veelenturf, 1995]
A two-layer MLP with sigmoid transfer function for the neurons in the first (hidden)
layer and one linear output neuron in the second layer can approximate any continuous
function �: Rn�R in any domain with any given accuracy.

This theorem can be extended to vector functions �: Rn�Rm
 by using P linear output neurons

and a ‘larger number’ of hidden neurons.
Now these two-layer perceptrons are used to realize the functions F(.) and G(.) in the general

state-space network architecture. Now it can then be concluded that any state-space system can
in principle be approximated arbitrarily well by a state-space neural network architecture with
two-layer perceptrons to compute the functions F and G.
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4.1.5 Approximation properties of the FRNN

The FRNN is not capable of simulating all state-space systems
It will be shown in this subsection that the FRNN is not capable of simulating all state-space
systems. The type 1 FRNN written as a state-space model has the output equation 2.15b which
is repeated here:

)uWxF(WC)u(xGy 6X6[6666 )()()(),()( QQQQQ ¼+¼¼== (4.2)

with C given in equation 2.16. The above equation shows the output function G S is computed by
a single layer of neurons.

An important fact that is known for single-layer neural networks is that they are not able to
approximate any continuous function as the two-layer neural network can (see subsection 4.1.4).
Proof
This inability is often demonstrated using the so-called XOR problem in which a neural network
has to learn the (logical, or binary) XOR function. It turns out a single layer network can not
realize this function.

The XOR function  is not a continuous function but a binary function. Since continuous
functions were assumed for F and G in all state-space models a continuous function is needed as
a counterexample. So a similar ‘continuous XOR’ function will be used here:

���������� 2)1()1(),( [[[[[[[[[[\;25 -+=-+-= (4.3)

that has identical behavior to the binary XOR function for inputs (x 1,x2) = (0,0) , (0,1), (1,0),
(1,1) but is continuous.

Now the dynamic neural network learning task consists of learning the following function of
input u(Q):

)}(1){1()}1(1){()}1(),({ QXQXQXQXQXQX\;25 --+--=- (4.4)

We first assume there is a FRNN and a fixed set of weights Wx, Wu such that the function yXOR
is realized. This leads to a contradiction as will be shown later.

The output is a scalar so a single output neuron is taken. This realizes the function:

))()(()( � QX:QIQ\ URZ
X ¼+¼= 6

URZ�
[ xW (4.5)

with scalar uS(Q)=u(Q) , the scalar Wu� = Wu
row1 is the first row of Wu and Wx

row1 the first row of
Wx. For C in equation 4.2 the vector C = [ 1 0 … 0 ] is taken to create a single output system.
The transfer function �(.) can be a linear or (logistic or tangential) sigmoid function, all of
which are monotonically increasing functions ( ��(x) > 0 ).

All dynamic behavior that is needed for this task is to somehow ‘remember’ the input u(Q-1) in
the state vector xS(Q). So we suppose this information is extracted out of the state in the
following way:

)1()( 
 -¼=¼ QX:Q [6
URZ�
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so the output neuron function becomes:

))1()(()( 

 -¼+¼= QX:QX:IQ\ [X (4.7)

5HTXLUHPHQWV
We see that for a correct realization of the task 4.4 the following four requirements should be
met:
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1. 0)0( =I is required for yXOR(0,0)=0

2. 0)( 

 =+ [X ::I is required for yXOR(1,1)=0

3. 1)( 
 =[:I is required for yXOR(0,1)=1

4. 1)( 
 =X:I is required for yXOR(1,0)=1

5HVXOW��
The equalities 3,4 combined with �(.) monotonically increasing gives 



[X :: = . Equalities 1,3,4

together with �(.) monotonically increasing gives 0, 

 >[X :: .

5HVXOW��
Equations 1,2 combined with �(.) monotonically increasing gives 0

 == [X :: . This
contradicts result 1.
&RQFOXVLRQ
So there exists no set of weights such that the FRNN realizes the function y XOR. Therefore, the
FRNN is not able to simulate all state-space systems. It was shown here for the type 1 FRNN.
For type 2 a similar proof can be constructed.

4.1.6  Recurrent neural networks and Turing machines

An issue that appears a lot in literature (so it should be an important or interesting topic) is the
relation between recurrent neural networks and the concept of the Turing machine. There are
theorems that describe this relation. They generally state the following:

All Turing machines may be simulated by recurrent neural networks with sigmoid
neuron activation functions.

Specifically this can be stated for the FRNN, NARX and state-space networks. See [Haykin,
1998] for the above results.

This research is of use when recurrent networks are used for Finite State Machine simulation
tasks. In this report these results are not used further.

4.1.7  State-space model versus input-output model

System identification and control
In [Wentink, 1996] the state-space model is favored over the input-output model at first (for
nonlinear system identification) because it is more general. But in case the target values for the
neural network realizing the function F(.) in the state-space equations 2.1 are unknown (that is,
when desired values for the state variables are not known), this approach is quickly dismissed.
The same argumentation is used in [Haykin, 1998]. The same argumentation is implicitly
present in [Lewis e.a., 1999], because the state-space model is only used there in case the state
of the dynamic system is fully measurable and target states are known.

From chapter 3 on training algorithms it follows however that these unknown target values can
be estimated by backpropagating the error from the network outputs. Whether such a procedure
will result in a state-space description that is better than an input-output description, is not
known in general and will surely depend on the application. Nevertheless, the state-space
approach should not be too quickly dismissed for the reason that target states are unknown.
There may be other good reasons of course to dismiss state-space networks, for example in
control applications, only networks are used that are guaranteed to be stable [Lewis e.a., 1999]
because stability is one of the main requirements in controller design, for any control system
used in practice.

An example dynamic system is shown in [Wentink, 1996] that can only be fully described by
a state-space system. The input-output model is not able to describe the system (in fact, two
alternating input-output models are needed to describe the system). Using an input-output neural
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network to identify this system seems a problem. In the experiments by Wentink the
performance of a single input-output neural network on the task is however still acceptable.
Classification
For classification tasks the dynamic systems perspective is often not used, so other criteria guide
the selection of an architecture (e.g. experimental performance). [Santini, 1995b] uses a state-
space description for sequence classification neural networks that is discussed in subsection
4.2.2.

4.2  Maximum A-Posteriori classification capabilities of
recurrent neural networks

In this subsection it is discussed if recurrent networks are capable of Maximum A-Posteriori
(MAP) classification. First the concept of MAP classification is introduced for static neural
networks (subsection 4.2.1). Then MAP classification of sequences is looked at in the context of
recurrent neural networks (in subsection 4.2.2).

4.2.1  Maximum A-Posteriori (MAP) classification

Definitions
The concept of the MAP classifier is only briefly introduced here because it is thoroughly
treated in many textbooks. See [Bishop, 1995] and [van der Heijden, 1995] for more
information on probability and classification concepts.

A key assumption for a classifier network is that it should not just learn the training set, but
should be able to JHQHUDOL]H the classification. This means the classifier also performs well for
new data which was not in the training set. It is stressed in [Bishop, 1995] that the goal in
network training then becomes to model the XQGHUO\LQJ� JHQHUDWRU� that produced the training
data. When the classification problem can be described within a probabilistic framework, the
underlying generator of the data can be modeled by the joint probability S(w i, u). This can be
written as the product of a FODVV�FRQGLWLRQDO�SUREDELOLW\�and a SULRU�SUREDELOLW\:

)()|(),( LLL SSS www uu = (4.8)

where wi ³ W are the K classes and u is the measurement vector. By using Bayes’ theorem
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the SRVWHULRU� SUREDELOLW\� S(wi |u) can be expressed as a function of the prior and the class-
conditional probability.

The MAP classifier is defined as the Bayesian classifier (that minimizes the risk) using an
uniform cost function. It can be derived [van der Heijden, 1995] that the expression for the
MAP classifier then becomes:
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This classifier selects the class� L� that maximizes the posterior probability S(wi |u). In case the
prior probabilities are unknown they are chosen equal ( S(wi)=1/K ) and the PD[LPXP�OLNHOLKRRG
classifier results:
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MAP classification in static neural networks
In [Bishop, 1995] it is shown a static neural network with K outputs, trained with input vectors
u and appropriate 0/1 targets that encode the class�L�of the data u, can learn to approximate the
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function S(wi|u) which underlies the training data. The neural network can then be used for
classification, so this neural network is a MAP classifier of the data u .
MAP classification of sequences
The definition of MAP classification of sequences is now given. In this case of sequence
classification, not a single measurement vector u(Q) is available but instead u(Q) and a sequence
of N past measurements u(Q),…,u(Q-N) at current time Q. These measurements are all assumed to
belong to a single class w i. The posterior probability of this sequence of class�w i is

))(())(),...,(( QSNQQS NLL Uuu ww =-  (4.12)

where the Uk(Q) is defined as a single vector that holds the sequence. From the static MAP
classification case the MAP classifier for sequences follows directly:
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Such a classifier, that uses an appropriate sequence of measurements to classify, is often seen as
the goal of a sequence classification system with recurrent neural networks.

The difference with a static MAP classification system is that subsequent measurements are
not assumed to be independent (as is the assumption in a static classifier), on the contrary, they
are highly correlated because the entire sequence is of one and the same class.

Therefore a classifier that looks at the entire sequence can possibly outperform one that looks
only at individual samples.
9DULDEOH�VHTXHQFH�OHQJWK
An interesting property of recurrent networks is that they can be used to classify sequences ofYDULDEOH�lengths. In other words, the variable N in the above equation does not have to be chosen
beforehand but may vary depending on the data or the optimal value of N can be learned from
the training data by the neural network.

If a static network or time-delay network is used for the same classification task, the variable N
would have to be explicitly chosen by the designer beforehand.

4.2.2  MAP Classification of sequences in theory by recurrent neural networks

MAP classification with the BPTT algorithm
Using just the fact that the BPTT algorithm will minimize the error over an entire training
sequence E(n0,Q) it may be possible to prove that a BPTT trained network eventually becomes a
MAP classifier of sequences, under certain conditions.

This idea emerged at a late stage of this project, so it could not be further investigated.
Proof of MAP classification capability
A proof given in [Santini e.a., 1995a] shows that recurrent neural networks (in fact, a state-
space neural network) is capable of MAP classification of sequences. This proof is analyzed in
Appendix C.1. The conclusion is that this proof is not of much value in practice.
MAP Classification by iterative updating of an estimate
In [Petridis e.a., 1996] and again in [Plataniotis e.a., 1997] it is shown how MAP Classification
of a sequence can be computed iteratively using the SDUWLWLRQ� DOJRULWKP. Previous MAP
estimates are kept and used together with new input data to do a new (and better) MAP estimate.
After�N�input samples have been processed, the result of the algorithm is the MAP estimate of
the entire sequence.

For recurrent neural networks, it is also often argued that they can perform classification of a
sequence by accumulating evidence (of the presumed class of the input sequence) over time.
This strongly resembles the formation of an estimate, which is iteratively improved as more
input data becomes available, as in the partition algorithm.

So it is possible that a recurrent neural network may learn to operate in a way that resembles
the partition algorithm.
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A disadvantage of the partition algorithm is that it requires for each class an RSWLPDO�HVWLPDWRU
for given data. This forces the classification system to be a classification-by-prediction system
(see subsection 4.3.1 for this subject), which is not the case in general for a classification
system.
Other theoretical results on MAP classification of sequences
In literature not much theoretical results apart from the partition algorithm were found on
sequence classification. Most current texts on classification treat the case of ‘static’
classification, that is with the assumption of uncorrelated data patterns. This choice is made in
order to obtain useful mathematical results. Sequence classification appears to be difficult
subject that is more than a simple extension of existing theorems.

4.3  Choices in a recurrent neural network classification system

Several choices have to be made in a classification system using recurrent neural networks. First
classification by prediction is mentioned (subsection 4.3.1), a very different approach to
sequence classification. Next several options for modularity of a classification system are
looked at (subsection 4.3.2). The choice of target values for neural network outputs is
introduced in subsection 4.3.3. Several types of targets can be used.

4.3.1  Classification by prediction

A classification system can be built by using several prediction modules. For each class, such a
predictor is trained. A predictor module is any system, for example a neural network, that is
trained to predict the signal of a specific class. The prediction is one-sample-ahead prediction of
the data sequence based on knowledge or a model of the specific class that the predictor is
associated with. For each class N there is a predictor that tries to predict the signal for the class:

);)(),...,0(()1(ˆ NNN QXXIQX ww ==+ (4.14)

During operation a decision module monitors the performance of all prediction modules. The
estimated class is the one for which the prediction network makes the best predictions. Such a
system is used in [Petridis, 1996], [Plataniotis e.a., 1997] and [Janssen, 1998].

This approach is rather different than training neural networks with targets that directly encode
class information. A problem is that not all signals are predictable, for example some noise-like
phonemes [Janssen, 1998].
'LVFULPLQDQW�YHUVXV�QRQ�GLVFULPLQDQW�WUDLQLQJ
A notable difference is that classification by prediction implies QRQ�GLVFULPLQDQW� training,
whereas training with class targets is GLVFULPLQDQW. While training predictor module N, only
example sequences of one class wk are shown to the predictor and it learns to predict data for
that class. But a predictor module is not explicitly trained to reject data of another class (i.e. to
make bad predictions for data of another class). In other words, it cannot discriminate between
classes and will just attempt to predict as good as possible. In training neural networks with
class targets, both examples of one class wk and counter-examples (of all other classes) are
shown to the network. The network can explicitly learn to recognize a certain class and reject
other classes, so the network learns to be discriminant. In [Bengio, 1996] the importance of
discriminant training is emphasized, although not in the context of classification-by-prediction
systems.

Classification by prediction is not used in experiments in this report because it is a rather
unconventional way of classifying.



�����&KRLFHV�LQ�D�UHFXUUHQW�QHXUDO�QHWZRUN�FODVVLILFDWLRQ�V\VWHP

81

4.3.2 Modularity of the classification system

A classification system can be made using just one neural network, or several in a modular
classification system. The assumption from now on is the common choice, that an N-class
classification system has N outputs, one for each class, in total. Each output is a measure of the
probability that the current data belongs to the associated class. An exception is a two-class
classification task that can be handle by just one output (N=1).
The two extreme cases for such a N-class classification system are:

- N neural network modules, one for each class (figure 4.1a)
- a single neural network with N class outputs (figure 4.1b)

Intermediate cases are also possible, for example:
- NM=N/NO neural network modules, each capable of classifying NO classes (figure 4.1c)
- 5 neural network modules, four N/6-class modules and one N/3-class module.

)LJXUH����� 7KUHH� GLIIHUHQW� PRGXODU� FODVVLILFDWLRQ� V\VWHPV�� D�� 1� PRGXOHV� ZLWK� �� RXWSXW� �� E�6LQJOH�PRGXOH�ZLWK�1�FODVV�RXWSXWV���F��1M PRGXOHV�HDFK�ZLWK�1O RXWSXWV
The described modular structures all have no hierarchy (i.e. at most one module is present
between input and any of the outputs). Hierarchical systems are possible, see ‘ensembles’ at the
end of this subsection.
Small number of modules versus large number
For the following discussion, two types of systems are considered. The first type is highly
modular (like in figure 4.1a) and has a large number of ‘small’ modules. The second type has a
small number of ‘large’ modules.
)LUVW�W\SH
Classification systems with a large number of small modules have the advantage that the correct
behavior for a single module is learned easier and quicker because the module is small. This is
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the case because small modules have much less complex structures (with fewer degrees of
freedom). This is known as the GLYLGH�DQG�FRQTXHU�principle. A difficult problem is being split
up into several more manageable sub-problems.
6HFRQG�W\SH
Classification systems with a smaller number of large modules have the advantage of VKDUHGNQRZOHGJH. For example, suppose that a large module with a group of neurons within it, has
learned to calculate a really useful ‘high-level’ feature of the input data. This feature that is
important for correct classification can then be put to use in the calculations for several class
probabilities within the module because the network module has several outputs. Effectively,
network resources can be shared, resulting in less weights for the total system. In a highly
modular system (the first type) each module would have to ‘find out’ this useful feature
extraction function for itself so it would be duplicated many times in each module.

Obviously, the disadvantages of the two systems are the opposites: the lack of shared
knowledge (for the first type) and the complexity of the learning task (for the second type). It
depends on the application what kind of modularity gives best performance.

It is even possible to create a system that shares advantages of both approaches: special
‘feature extraction’ modules can be introduced whose output goes to all classification modules.
This way knowledge is shared, while a highly modular architecture can still be maintained. This
approach is mentioned in [Bengio, 1996] (‘modularization’) in the context of a speech
recognition application. It requires however more application of prior phonetic knowledge than
the other approaches mentioned.
Ensembles of neural networks
The benefits of modular networks are used in many neural network architectures. These
architectures are often called HQVHPEOHV�of neural networks or neural network FRPPLWWHHV�(see
[Haykin, 1998] chapter 7). The corresponding training algorithms often do automatic
construction and simultaneous training of an ensemble. See for example [Fritsch, 1998] for a
hierarchical neural network ensemble approach applied to speech recognition. A hierarchical
network growing approach called 1HXUDO�7UHH�1HWZRUNV is presented in [Patterson, 1996].

The simplest ensemble/committee method for neural network classifiers is described in
[Bishop, 1995]. The committee consists simply of N identical neural network structures (but
each trained with different initial random weights) whose class predictions are averaged. It is
proven that classification error will not increase and may be decreased by selecting a higher N.
Because of its simplicity this method can be readily tested.

Describing ensemble methods further is outside the scope of this report although the approach
seems appealing to handle complex problems.

4.3.3  Selection of targets

Usually a neural network system for classification has N outputs, each for one of the N classes.
During training, targets can be selected in a number of ways.
One-zero targets
Targets can be chosen as follows: during training an output�N�has a target one if a data sequence
belongs to that class (w=wk) and a target of zero otherwise. These are called one-zero targets or
binary targets.
Double threshold targets
Double threshold targets [Veelenturf, 1995] for outputs are a region close to one, d(Q) � (1-a), if
a data sequence belongs to that class and a region close to zero, d(Q) � a, otherwise. Here a is
chosen small. These targets are ‘easier to reach’ by the neuron outputs because these usually
have a limited output range <0,1>. By using targets just inside this interval, the output neurons
are not driven into their saturation region (where the output function derivative is close to zero)
during training.

Although this will not be explicitly mentioned, the double threshold targets can be combined
with any of the following methods of target selection.
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Smooth targets
Suppose a data sequence is available for training that consists of class 1 data for the left half.
The next half is data of class 2 (see figure 4.2a). The one-zero targets d1(Q) and d2(Q) for the two
network outputs are given in figure 4.2b. One can argue the abrupt step in the targets is a
difficult function to learn for the neural network with its smooth nonlinear functions. Or, in
other words: the training algorithm will put a lot of ‘effort’ into approximating the step function
even though that is absolutely not required for obtaining a good classifier. To solve this problem
a smooth target can be used (see figure 4.2c) [Kasper e.a., 1994]. In this example, it is a linear
interpolation between the desired targets. Other functions could be used.

)LJXUH� ����� � D�� GDWD� VHTXHQFH�ZLWK� �� E�� RQH�]HUR� WDUJHWV� DQG� �� F�� VPRRWK� WDUJHWV�� G�SDUWLDO�VXSHUYLVLRQ
Partial supervision: supervision does not have to be everywhere
Another solution to the just-mentioned problem of abrupt steps in the targets is to remove
supervision in certain intervals. In figure 4.2d this is shown. It is assumed that a transition from
one class to another cannot be defined exactly (as is often the case in speech recognition), so a
target is not given in this transition-interval. This procedure emphasizes that detecting the exact
class-boundary is not the goal, but rather detecting if a certain class ‘occurred’ in the sequence
(as is the case in speech recognition).

This procedure of partial supervision (see also [Bengio, 1996]) can easily be included in the
training algorithms given in this report by setting the instantaneous error e(Q) = 0 for all times Q
where no supervision is desired.
(QG�RI�VHTXHQFH�VXSHUYLVLRQ
Yet another option for targets based on partial supervision is only using supervision at the end
of a sequence [Bengio e.a., 1993]. This kind of target selection can be used in sequence
classification tasks. What it means is, that most of the time no targets are given (no supervision)
but only at the end of a sequence the class target is given.
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This approach seems logical, because only at the end of it can the full sequence be classified.
The network is trained to first process the whole sequence and then classify it. So a wrong
classification halfway the sequence is not ‘punished’, as long as the classification at the end of a
sequence is still correct.
Weighted supervision
In the ModNet toolbox implementation, partial supervision is generalized to ZHLJKWHG
VXSHUYLVLRQ which means an error weighting coefficient ai(Q) can be given to each network
output at each time instant. The coefficient can be close to 1 to stress the relative importance of
the target, or close to zero if the current target is not very important. Values in between
represent intermediate cases.

As special cases of weighted supervision are included
- normal supervision: if all supervision coefficients are one, then supervision is everywhere
- partial supervision: when the error weighting coefficients are sometimes zero and sometimes

one. Zero values correspond to no supervision at that time/output.

Delayed targets
A commonly applied procedure in recurrent network classification tasks is to GHOD\� the target by
1, 2, or more time steps. Effectively, a delayed target allows the use of ‘future’ input data by the
network. This is the reason that targets are delayed in some neural classification systems.

In speech recognition for example, input data u(Q+1) does contain information about the
phoneme class at time Q (which is coded into t(Q) ).

Suppose a target t(Q) is delayed by amount G to a new target sequence t�(Q):
)()(' GQWQW -= (4.15)

The network uses u(n0),…u(Q) to calculate y(Q) which should approximate the target t �(Q). So
u(n0),…u(Q) can be used by the network to approximate t�(Q) = t(Q-d). It can be seen that ‘future’
inputs u(Q-d+1),…u(Q) can be used by the network to approximate t(Q-d).

A good example is the type 2 FRNN, where the minimum delay of a path between an input
and an output is one. The target should then be delayed by d = 1 if there is a relation to be
learned between input u(n) and target t(n).

4.4  Conclusions

Problems in using recurrent networks: stability and vanishing gradients problem
It was found that stability of recurrent networks is not guaranteed without extensive measures
(in fact global stability can only be guaranteed by making very specific architectural choices). In
spite of the danger of instability of recurrent networks, the topic of stability is usually not
considered for recurrent networks used in classification tasks. Further research on this is
recommended.

The vanishing gradients problem is an important problem in training recurrent networks.
However this issue is mostly considered for Finite State Machine learning tasks where
information has to be retained  by the neural network over arbitrary large intervals. So for the
more local task of phoneme classification this issue was not considered.
Approximation properties
It was shown that the FRNN architecture can not simulate all state-space systems because it has
only one layer. The general state-space network architecture, that allows more layers, is a better
choice.
State-space model versus input-output model
The conclusion on comparing the state-space model with the input-output model is that the latter
is often chosen because a state-space model is considered not trainable. This report shows it can
however be done. Which model is best, will depend on the task at hand. For classification
purposes often the model is chosen that performs best at the task.
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Classification capabilities of recurrent networks
It turned out difficult to actually prove that a recurrent network can do Maximum A-Posteriori
sequence classification. (A proof was given but this one is of no practical value.)

A big advantage of recurrent networks over static networks is their ability to process (and
classify) sequences of variable length.
Modularity of the classification system
There are several choices for modularity of a classification system. It can be concluded that one
big neural network could in principle handle any classification task but in practice the training
of such a network is increasingly difficult. To obtain ‘trainable’ networks a modular approach or
ensemble approach is advised. An optimal trade-off in modularity can not be given beforehand,
it should be obtained by combining experiments with the specific task at hand and a-priori
knowledge about the task.
Selection of targets for classification
A number of options for target selection were considered. Especially the use of SDUWLDOVXSHUYLVLRQ� is promising because it can describe very well the uncertainty in phoneme sound
classification (i.e. the lack of an exactly defined separation between two phoneme sounds).

A generalized form of partial supervision was introduced in this chapter, weighted
supervision, which is used in the ModNet toolbox (see subsection 3.8.2).
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CHAPTER 5 PHONEME RECOGNITION EXPERIMENTS

5.1  Introduction

In this chapter several neural network structures and algorithms are applied to a classification
problem: phoneme recognition.

The phoneme recognition experiment is first carried out with artificially created phoneme
sounds to make it easier to spot possible errors in the system and gain experience with a
classification task that is much easier than classifying real human speech. These experiments
will be referred to as the ASP (Artificial SPeech) experiments.

The artificial phoneme sounds are first introduced in section 2.3. To classify phonemes
characteristic features have to be extracted out of the phoneme sounds. The feature extraction
process (or preprocessing) is treated in section 2.2.1. A postprocessor is part of most neural
network classification systems. Some simple postprocessors are introduced in section 2.4.1. The
procedure that was followed in the ASP experiments is explained in section 3.6.1. Results for
the different classification methods are listed in section 2.2.4. Some preliminary experiments
were done on real speech sounds in section 3.8.1. Conclusions about the experiments follow in
section 3.1.3.

5.2  Phoneme data

The classification task was to classify a signal that contains artificial phoneme sounds. These
phonemes can belong to one of three distinct classes. The artificial phoneme classes were
inspired on spectrograms of the following real phonemes2 (all vowels): Phoneme 1 is /ay/ as in
the word ‘bye’ ; phoneme 2 is /ey/ as in ‘bay’  ; phoneme 3 is /iy/ as in ‘few’.

These phonemes are all QRQ�VWDWLRQDU\� or WUDQVLWLRQDO� phonemes. This means that the
frequency content of the sound is not fixed but changes over time according to a general pattern.

Table 3.1 shows the frequency contents of the three artificial phonemes. Each phoneme
consists of three sine waves (f1, f2 and f3) having varying frequency over time. The index trel is
the relative time index of the phoneme with range [0,1]. A relative time index is defined because
phonemes may have different lengths.

The table is interpreted as follows: for each relative time listed, the frequency values listed (for
f1, f2 ,f3) are approximately the frequencies that will be present in the artificial phoneme at that
moment.  A blank entry means that no frequency is defined and the actual frequency of the sine
wave will approximately lie between the preceding value and the next value.

The frequency values stated are however not completely fixed, because each generated
phoneme would then be equal to all other generated phonemes� Small random deviations in the
frequency values are therefore introduced. The values for the deviations are drawn from a
normal random distribution (m=0, s=20).

Three spectrograms for three realizations of artificial phonemes (one realization per class) are
shown in figure 2.8. The changes over time of the frequency components specified in the table
can be recognized in the spectrograms. The characteristic ‘bending’ shape of the spectral
components over time is a result of an interpolation process: the given frequency points are
fitted with a cubic spline interpolation (with the default spline functions as provided by Matlab).

2 found on the CSLU website ( http://cslu.cse.ogi.edu ) or [Rabiner e.a., 1993]



&KDSWHU����3KRQHPH�UHFRJQLWLRQ�H[SHULPHQWV

88

Phoneme 1 Wrel

IUHT��FRPS� 0 0.45 0.5 0.6 1.0
f1 1000 1200 1200
f2 2200 2400 2700
f3 4400 4400 4400

Phoneme 2 Wrel

IUHT��FRPS� 0 0.45 0.5 0.6 1.0
f1 1000 1000
f2 2900 3100
f3 4100 4300 4400

Phoneme 3 Wrel

IUHT��FRPS� 0 0.45 0.5 0.6 1.0
f1 1000 1200 1200
f2 2700 2400 2200
f3 4400 4400 4400

7DEOH������)UHTXHQF\�FRQWHQWV�RI�WKUHH�DUWLILFLDO�SKRQHPH�FODVVHV��IUHTXHQFLHV�LQ�+HUW]�
This process leads to different phonemes for each class that ‘look like’ each other but are

different for each realization.

time n (* 2 samples)

F
re

qu
en

cy
 (

 *
 F

ny
qu

is
t )

Phoneme 1

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time n (* 2 samples)

F
re

qu
en

cy
 (

 *
 F

ny
qu

is
t )

Phoneme 2

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time n (* 2 samples)

F
re

qu
en

cy
 (

 *
 F

ny
qu

is
t )

Phoneme 3

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

)LJXUH� ����� /RJDULWKPLF� VSHFWURJUDPV� RI� WKUHH� DUWLILFLDO� SKRQHPHV� �RQH� RI� HDFK� FODVV��� 7KHSUHVHQFH�RI�D�VLJQDO�LV�VKRZQ�LQ�ZKLWH�
Further information
The duration of each phoneme was set Tphone = 0.3 (s) and sampling frequency FS = 16(kHz) was
used.

Phoneme class 2 is the most static one (the smallest maximum change in frequency). The left
parts of phoneme 2 and 3 may cause confusion to a classifier because the frequency content is
similar. The same holds for the right parts of phoneme 1 and 2 and the middle parts of all three
phoneme classes.
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5.3  Feature extraction

Before a speech signal can be classified, the sampled speech first has to be processed to extract
characteristics of the speech that are important in the recognition process. Such a procedure is
called IHDWXUH� H[WUDFWLRQ�or SUH�SURFHVVLQJ. In most cases the feature extraction process also
significantly reduces the amount of data.

Many different feature extraction procedures have been used in speech recognition. During
years of research, the FHSVWUXP feature extraction method turned out to be one of the best
performing methods [Rabiner e.a., 1993].

More recent research on feature extraction points to other methods that yield comparable or
better performance in speech recognition. However, the cepstrum is still a standard that has not
yet been replaced. Therefore a feature extraction procedure based on this method is used and it
is described in this section.

First the enframing of a speech signal is described (subsection 2.2.2), a procedure that yields
speech fragments that are suitable for further processing. In subsection 4.1.7 the basic cepstrum
feature extraction method is introduced. In subsection 2.2.3 some more refinements of the
cepstrum method are described. Cepstrum values are normalized which is discussed in
subsection 2.4.2. Finally in subsection 5.3.5 the feature extractor is described that will be used
in the artificial speech recognition experiments in this chapter.

In this chapter references will be made to VoiceBox [Brookes, 1998]. This Matlab toolbox
will be used in the experiments to perform part of the feature extraction process that is described
in this chapter.

Note that far more information than is presented here can be found in the literature (references
are made) and this text is meant to summarize the choices made for the feature extraction
process in the ASP experiments.

5.3.1  Enframing of a speech signal

In most feature extraction methods a spectrum of the sampled speech signal is calculated at
some stage, for example by using the Discrete Fourier Transform (DFT). Using the spectrum,
the frequency components present in a speech signal can be obtained. Because the DFT does not
provide information on the temporal location of frequency components, it is not sensible to use
it right away on a complete speech signal, a sentence for example.

To obtain temporal information the DFT analysis should be performed on small fragments of
speech. The fragments are taken small enough to be considered quasi-stationary. The
fragmenting procedure is often called HQIUDPLQJ or EORFNLQJ of the speech signal and can be
done in a number of ways. See [Rabiner e.a., 1993] for more information.

The enframing procedure chosen for the ASP experiments takes frames of 16(ms) of speech
(N samples) that overlap both the previous and the next frame by N/2 samples ( 8(ms) ), a
default choice as given by VoiceBox. Overlapping frames are used to obtain a smoother spectral
representation of the speech. The enframing procedure used is shown in figure 2.9.

Interestingly, the choice of 16(ms) frames (N=256 at FS=16(kHz)) was also found to be the
best performing frame length in the phoneme recognition experiments in [ten Hove, 1996].
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)LJXUH������(QIUDPLQJ�D�VSHHFK�VLJQDO�V�Q��ZLWK�1���RYHUODSSLQJ�IUDPHV��ILUVW���IUDPHVVKRZQ�EHORZ�WKH�VLJQDO�
5.3.2  The cepstrum

The cepstrum will be introduced here briefly. This text is a summary of the information that can
be found in other books and reports [Rabiner e.a., 1993], [Nakagawa, 1995], [ten Hove, 1996],
[Lokerse, 1995].

The name ‘cepstrum’ is derived from ‘spectrum’. The cepstrum consists of individual
coefficients that are called the FHSVWUDO�coefficients. The cepstrum is calculated from a speech
signal fragment s(Q) using the procedure shown in figure 2.2.

)LJXUH������7KH�SURFHGXUH�RI�WKH�FHSVWUXP�FDOFXODWLRQ
These steps are now described in more detail.
Step 1: Windowing
The ZLQGRZLQJ� procedure simply multiplies the speech fragment s(Q) by a suitably chosen
window function w(Q):

)()()( QZQVQVZ ¼= (5.1)

to suppress boundary effects in the Discrete Fourier Transform (DFT) procedure that follows
next.
Step 2: Logarithmic magnitude DFT
The DFT is performed to obtain the spectrum of the speech fragment:
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The logarithm of S(k) is then taken to account for the logarithmic nature of human loudness
perception. The logarithmic magnitude spectrum Y(k) is obtained:

|)(|log)( N6N< = (5.3)
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Step 3: IDFT
The inverse DFT (IDFT) of Y(k) is calculated to obtain the cepstral coefficients (the cepstrum).
The cepstrum can be seen as the spectrum of the logarithmic speech spectrum. To see why this
is done, a model of human speech production is first introduced.
7KH�VRXUFH�ILOWHU�PRGHO�IRU�VSHHFK�SURGXFWLRQ
The production of speech can be captured in a model called the source-filter model [Rabiner
e.a., 1993] [ten Hove, 1996]. The model is shown in figure 2.3. The first block in this model is
the source, that models the sound generated by air flowing from the lungs through the vocal
chords. The second block models the passing of the sound through the vocal tract, that filters the
sound. The vocal tract filter strongly influences the actual phoneme sound produced

Filter
V�Q�X�Q�

Source

Excitation Vocal tract

)LJXUH������7KH�VRXUFH�ILOWHU�PRGHO�IRU�VSHHFK�SURGXFWLRQ
Since the vocal tract cannot change shape very quickly the filter transfer function is varying
relatively slowly. The speech wave can be expressed as a convolution of the filter impulse
response h(Q) with the source signal u(Q):

)(*)()( QXQKQV = (5.4)

0HDQLQJ�RI�WKH�FHSVWUXP
To show what meaning should be attributed to the cepstrum, the steps of the cepstrum
processing are performed on the speech s(Q) from equation 2.1. The DFT operation F(.) on the
speech yields:

))((*))(())(*)(())(( QX)QK)QXQK)QV) == (5.5)

The log magnitude operation yields:
|))((|log|))((|log|))((*))((|log|))((|log QX)QK)QX)QK)QV) +== (5.6)

We see the log spectra of the relatively broadband vocal tract filter h(Q) and of the relatively
narrowband source signal u(Q) are added in the above equation. Because the IDFT of this
quantity is the cepstrum and the IDFT is a linear operation, the speech cepstrum is the filter
cepstrum added to the source cepstrum. It is explained in [Nakagawa e.a., 1995] that the source
cepstrum can be removed by applying FHSVWUXP�ZLQGRZLQJ, which is in fact using a limited
number of lower cepstral coefficients and discarding the remaining higher coefficients. This
leaves only a cepstral representation of the vocal tract filter, which is related to the actual
phoneme produced by the speaker, which is what we would like to know.
6SHFWUDO�HQYHORSH
The cepstrum can be converted back to the log spectrum by applying the DFT to cancel the last
IDFT operation. By applying cepstrum windowing first an approximation of the log spectrum
y(Q) called the VSHFWUDO� HQYHORSH is obtained. By discarding more and more of the higher
cepstrum coefficients a progressively ‘coarser’ approximation of the log spectrum is obtained
when the remaining cepstral coefficients are transformed back with the DFT. See [ten Hove,
1996] where different spectral envelopes are graphically compared, for several cepstral window
sizes.
Using the Discrete Cosine Transform (DCT) in the cepstrum calculation
In the VoiceBox software a Discrete Cosine Transform (DCT) is used instead of the IDFT in the
last step of the cepstrum calculation. Essentially this leads to the same numerical result (when
applied on the real logarithmic speech spectrum) as the IDFT. The cepstral coefficients
calculated by the DCT were found to only differ by a scaling factor, so the choice of either
transform will have no influence on recognition performance. The mathematics behind the DCT
approach was therefore not further investigated.
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Insensitivity of the cepstrum to pitch of speech
Since the cepstrum is the spectrum of the log-magnitude speech spectrum, the 0th cepstral
coefficient represents the offset (DC value) of the log-magnitude speech spectrum. This 0th

coefficient is often not used in a subsequent speech recognition system and thus the information
on the global pitch of a fragment of speech is discarded. This can be safely done because the
pitch does not aid phoneme recognition in a speaker independent recognition setting.

However, the other cepstral coefficients do give information on absolute frequencyGLIIHUHQFHV. It is possible that using only relative frequency differences gives a better set of
features for speech recognition, than using these absolute frequency differences. This would
however require a different method of feature extraction so it is not further investigated here.

5.3.3  Extensions of the cepstrum

The mel-cepstrum
Studies have shown the human ear is more sensitive and accurate at lower frequencies of the
hearing range. A procedure called Melscaling transforms the linear frequency axis of a speech
signal to the nonlinear Melscale [Rabiner e.a., 1993] which corresponds to the scale of human
sound perception.
The mel transformation is given by Fant’s equation [ten Hove, 1996]:

[Mel])11000/log()
2log

1000( +¼= I70 (5.7)

with � the linear frequency scale in (Hertz). Details on the practical implementation of the
Melscaling transform can be found in [Rabiner e.a., 1993]. Often a non-uniformly scaled
(melscale spaced) filterbank is used to reduce a complete logarithmic spectrum of a speech
fragment to a smaller number of coefficients and at the same time perform the melscale
transformation. The cepstrum of melscaled speech is called the PHO�FHSVWUXP.
The filterbank approach
A lot can be said about the use of ILOWHUEDQNV in the feature extraction process. More information
can be found in [Rabiner e.a., 1993]. The filterbank approach can be used in a stand-alone
manner to extract features, or it can be combined with the mel-cepstrum feature extraction
procedure. The latter is done in VoiceBox.

Here, only an example of a triangular melscaled filterbank will be given. See figure 2.7 for a
graphical representation of the filterbank with NFB = 5 separate banks.
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)LJXUH������*UDSKLFDO�UHSUHVHQWDWLRQ�RI�D�WULDQJXODU�PHOVFDOHG�ILOWHUEDQN
Each one of the five triangles is the transfer function FFB(�) of a filter. Together these five filters
span the whole frequency range from 0 (Hz) up to the Nyquist frequency FS/2 = 8000 (Hz)
(sampling frequency FS = 16 (kHz) ).
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After passing the full speech spectrum through each filter, the magnitude of the filter output is
calculated. For each filter, these magnitude values are the only information that is kept.
Therefore the full speech spectrum is reduced to just 5 coefficients for the example filterbank
given above. This new spectral description is a crude approximation of the original spectrum in
which spectral details are lost, but the global structure of the spectrum can be preserved if the
number of filters in the filterbank is high enough.

The logarithmic melscaling operation (of equation 2.9) is visible in the width of the filters:
these widths are not equal, but the filter width increases with higher frequency. The space
between filter center frequencies also increases with higher frequency. As a consequence the
filterbank coefficients are more ‘sensitive’ in the lower frequency range, just as the human ear
is. This kind of setup, with varying filter width or center-to-center frequency distance, is called a
non-uniform filterbank.

The filterbank method resembles a common model of the processing of sound by the human
ear. This model of human hearing assumes the existence of a ‘bank’ of frequency-sensitive
sound receptors in the ear. Frequencies that are very close trigger the same sound receptor so
these sounds are perceived as having identical frequencies.

In VoiceBox, the filterbank method is used to filter the magnitude spectra of speech
fragments. The default setting is a triangular melscaled filterbank with NFB = 29 filters.
Psycho-acoustic processing
In [Foks, 1997] the effect of further psycho-acoustic processing of the speech data is measured.
The argument used here is that sounds that are inaudible for the human ear, are best removed
before attempting speech recognition because these sounds are effectively noise. A small
performance improvement in speech recognition is reported, when using psycho-acoustic
processing.

Interestingly, the implementation of a basic psycho-acoustic processor is very simple because
existing MPEG encoder/decoder software (for example the mpeg layer 3 format) can be used.
This allows for a quick experimental verification of the effect of psycho-acoustic processing.
Delta and delta-delta cepstrum features
It is very common in practical speech recognizers that the basic (mel-)cepstrum feature set is
extended with the so-called GHOWD�and GHOWD�GHOWD�cepstral coefficients [Rabiner e.a., 1993]. The
delta coefficients represent the change of the cepstral coefficients over time, simply by
calculating an approximation to the derivative (which is the difference or delta of the
coefficients over time). The ‘time’ axis is in this case a discrete number that point to the
successive frames (see subsection 2.2.2 about frames) of speech. In a similar way, the delta-
delta coefficients represent the change of the delta coefficients so it can be viewed as the
‘acceleration’ of the cepstral coefficients over time.

These coefficients describe the transitional nature of speech sound, so delta and delta-delta
features may improve classification of transitional phonemes.

In practice the delta coefficients, when calculated by the difference of the cepstrum
coefficients between successive frames, are very ‘noisy’ so often a different computation is
used. Rabiner suggests an estimation of the derivative which is a first-order polynomial fit (a
least-squares estimate) over a finite length interval which can be described by the following
equation:
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Where cm(Q), Dcm(Q) are the mth� cepstral coefficient at times Q and the estimated delta
coefficient, respectively. m is a normalization coefficient. The finite interval over which the
estimate is calculated has length (2K+1). A value of K = 3 is suggested by Rabiner. VoiceBox
was checked and was found to use exactly the same method with K = 4. To obtain the delta-
delta coefficients the same fitting procedure can be applied again but this time on the delta
coefficients. This is done in the VoiceBox software with K=1.
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The Wepstrum
Instead of using Fourier transforms, various wavelet transforms can be incorporated in the
cepstrum approach. This approach is described in [ten Hove, 1996] where the method has been
named ZHSVWUXP. A wavelet approach seems very useful because time and frequency
resolutions are not fixed as in the Fourier transform, but the resolution trade-off can be varied
among different frequency ranges. The wepstrum outperformed the standard mel-cepstrum in a
preliminary experiment [ten Hove, 1996].
Other extensions
A practical speech recognition system will have many more extensions to the feature extraction
process. What additional processing is used, mostly depends on operation environment of the
system. Examples are:

- different feature extraction procedures for different categories of phoneme sounds
- background noise reduction (e.g. speech recognition in a noisy environment)
- transmission channel noise and distortion reduction (e.g. speech over a telephone line)
- adapting the feature extraction mechanism or classification system to the current speaker

On these topics, relevant literature exists. These issues are not addressed in this report.

5.3.4  Normalization of features (to zero mean and unity variance)

It  is a very common procedure that input features are QRUPDOL]HG�before using them in a neural
network based classification procedure. Without normalizing it is possible that different
coefficients in a feature vector have a widely varying magnitude of values. The differences can
sometimes be several orders of magnitude.

This poses several problems, for example in neural network training, because some neural
network weights should be initialized with larger values (to handle input coefficients with small
magnitude) and other weights should be initialized with small values (to handle inputs with
large magnitude).

It is easier to normalize the feature set itself in advance, so that all coefficients have a
magnitude of the order unity. Then, all neural network weights can be safely initialized with
values of order unity. The normalization procedure used in the ASP experiments is the
following linear transformation of the coefficients xi(Q):
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where x(Q) are the feature vectors (patterns) Q = 1…N and the mean and standard deviation over
the coefficients are given by:
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The result is a new set of normalized patterns xi
norm(Q) with for each coefficient zero mean and

unity variance over the whole feature set.
This process is described in more detail in [Bishop, 1995]. In this normalization transform

each coefficient is treated as independent from other coefficients. There are other approaches
that also take into account correlations between coefficients, for example ZKLWHQLQJ� of input
vectors [Bishop, 1995] [van der Heijden, 1995].
Normalizing new features
The linear transformation of equation 2.25 is used as a part of the preprocessor, to process all
new speech features that become available when using the speech recognition system in
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practice. The new features will be scaled into approximately the same range as the original
feature set.

5.3.5  Description of the mel-cepstrum feature extractor

The mel-cepstrum feature extractor from the VoiceBox software will be used in the ASP
experiments. The complete procedure is summarized here.
The mel-cepstrum feature extraction procedure

- (QIUDPLQJ� WKH� VSHHFK� VLJQDO��Frames of N=256 samples, 16(ms) at FS = 16(kHz), are
taken from the speech signal. The frames overlap by N/2 samples, 8(ms).

- :LQGRZLQJ�RI�IUDPHV� A 256-point Hamming window is applied to each frame.
- DEVROXWH�')7��to obtain the magnitude spectrum of each frame
- )LOWHULQJ�HDFK�VSHFWUXP: A melscaled triangular filterbank with 29 filters is used to obtain

a smoother spectrum (described by 29 coefficients) and at the same time transform the
linear frequency scale to the melscale.

- ORJDULWKP: the melscaled filtered magnitude spectrum is converted to a logarithmic
spectrum.

- ,')7: the logarithmic magnitude spectrum is converted to 29 cepstral coefficients using
the IDFT.

- FHSVWUXP� ZLQGRZLQJ: the 0th cepstral coefficient is discarded, then the following NC
cepstral coefficients are kept and the rest is discarded. The (VoiceBox default) value
NC=12 is taken so 29-12 = 17 coefficients are discarded.

- QRUPDOL]DWLRQ��normalization by a linear transformation is used as described in subsection
2.4.2.

All steps except normalization are performed in the PHOFHSVW�function in VoiceBox. Note that
delta and delta-delta cepstral coefficients are not included in the feature set in the ASP
experiments, only 12 cepstral coefficients.

5.4  Postprocessing

The term postprocessing is used in this report for any further processing that may be performed
on the output of the neural networks in the classification system. At this stage the local
classification of speech frame(s) is already done but the postprocessor can do more, for
example:
- combine several phoneme classifications to one word classification
- reject certain classified frames that seem improbable, compared to classification results of

nearby frames.

The final classification decision is always based on the output of the postprocessor.  Some
options for the postprocessor are discussed now.
No postprocessing
If no postprocessor is used, the classification decision is directly based on neural network
outputs.
Simple moving average postprocessor
A simple postprocessor is the smoothing operation (implemented as a moving average filter). It
calculates the mean of a number of (2K+1) neural network classification results (each result
obtained by classifying a single frame) to obtain a final classification. This procedure can be
described by:
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where yi(Q) are the neural network outputs at time/frame Q.
This kind of filter can improve classification performance because spurious misclassifications

of a single frame or a few frames are removed. The use of this filter effectively implements the
prior knowledge that the minimum phoneme duration is about M = (2K+1) frames.
Advanced postprocessors
In a complete phoneme-based speech recognition system the ultimate goal is not to detect only
phonemes but complete words and sentences. In this case the pre-processor together with the
phoneme classification system is only the front end of the total system. The postprocessor (or
the EDFNHQG� of the recognition system) then includes language models (e.g. a pronunciation
dictionary and grammar rules), models to detect common mistakes made by the phoneme
classifier and perhaps more. These models extract the most probable sentence out of a sequence
of detected phoneme sounds.

To implement a complete recognition system is not within the scope of this report. The
phoneme recognition front-end can be evaluated without a backend speech recognition. In this
case the postprocessor can be kept very simple: none, or the moving average filter.

The most used postprocessor is however a bit more complicated. It is the phoneme
Insertion/Deletion/Substitution error calculation method as used in [Robinson, 1994].

5.5  Procedure

In this section the procedure for recognition experiments with artificial phonemes will be
described. A number of different neural networks and one other method will be used as a
classifier on the same classification task.
The following steps were taken in the ASP experiments. For each classification method:

1. a classifier is selected (subsection 3.6.2)
2. the classifier is initialized (subsection 3.1.2)
3. the classifier is trained with a training set of 15 phonemes, five of each class (subsection

3.1.1)
4. during training, a validation set of 3 phonemes is used, one of each class (subsection 2)
5. the training process is repeated several times for the same classifier (subsection 2.2)
6. when training is done, the performance of the classifier on an independent test set of 18

phonemes (6 of each class) is measured (subsection 2.2.5).

These steps will be clarified now in subsequent subsections.

5.5.1  Selection of a classifier (1)

The selection of a classifier starts with the selection of the method (or neural network type) to
use for the task. To be able to compare the performance of the recurrent neural networks
described in this report to other methods, several methods were used.

After the method selection, there remain more choices: for all neural network methods in this
report, the network structure must be chosen by the user before training. This choice is often
made by trial and error and maybe some insight or experience with similar classification tasks.
There are neural network approaches that modify the network structure as part of the training
process (i.e. the neural network is ‘grown’ or ‘downsized’ as prescribed by an algorithm) so
arbitrarily choosing a structure is avoided. As these structure adaptation approaches were not
investigated, a choice has to be made by hand.

In all experiments the trial and error approach was used to be able to compare the performance
of a large number of different structures. The differences in final performance may reveal what
type of structure is best for this classification task.
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Methods of classification
The methods used are listed in Table 5.2.

a b c d e f
Method

No.
Method Number

of layers
Toolbox
/ m-file

Training
algorithm

Initiali
-zation

1 Multilayer Perceptron (MLP, static
neural network)

2 NNet LM NW

2 State-space neural network 2 (in both
modules)

ModNet BPTT-LM NW

3 FIR neural network (category: time
delay neural network)

2 FIR Temporal
Backprop.

random

4 K-Nearest Neighbor classification
(k-NN)

- nnk_clas
sifier.m

�QR�WUDLQLQJ�QHHGHG�
5 Fully Recurrent Neural Network

(FRNN)
1 (by
definition)

ModNet BPTT-LM NW

6 Multilayer Perceptron (MLP) 3 NNet LM NW

7 State-space neural network 2 (in both
modules)

NNet Matlab/
Elman

NW

7DEOH������&ODVVLILFDWLRQ�PHWKRGV
The methods (column b) are numbered (column a) for reference purposes. All these methods
except the K-Nearest Neighbor classifier are neural networks. The number of layers (column c)
of the neural network is chosen beforehand for each method.
All methods except the K-Nearest Neighbor classifier need training so they use a training
algorithm (column e).  The Matlab implementation of the algorithms (both training and
simulation) is in a toolbox or m-file (column d). More information about these toolboxes can be
found in the references [Matlab, 1997S] [Dijk, 1999S] [Janssen, 1998S] and appendices. The
initialization method (column f) is further explained in subsection 3.1.2.
Choices in network structure for each method
For each method the architectural choices are different. These choices are summarized in table
3.3. For each method (column a) the parameters listed in column b have to be chosen. The
meaning of the parameters is given in column c. The values that have been tried for each
parameter (in all possible combinations) are in column d. The total number of different
structures caused by trying parameter combinations is given in column e.

Repeated training is used (see subsection 2.2): the number of repeated runs with the same
structure is in column f. The total number of training runs (which is the total number of
structures times the repeat value) is listed in column g.
Occasionally the experiments were time-consuming and the last few runs were aborted (in
methods 2 and 5). For method 2 not all structures were tried, just 32 of the total of 48.



&KDSWHU����3KRQHPH�UHFRJQLWLRQ�H[SHULPHQWV

98

a b c d e f g
Method

No.
Structural
parameters

meaning

1 N1 The number of hidden neurons (in layer 1). 1…25 25 10 250

N1M1 The number of hidden neurons (in layer 1 of
module 1).

2,3

N1M2 The number of hidden neurons (in layer 1 of
module 2).

3…8

2

NS The size of the state vector (is by definition
equal to the number of output neurons in layer
2 of module 1)

1…4

48
(only

32
tried)

10 320
(only

316
run)

N1 The number of hidden neurons (in layer 1). 2,…,7

T1 The number of delay taps for the layer 1
inputs.

2,…,6

3

T2 The number of delay taps for the layer 2
inputs.

2,…,6

150 10 1500

4 k The number of Nearest Neighbors 1, 3, 5, 7,
…, 35

18 - 18

5 N The number of neurons (minimum 3: external
outputs, one for each class)

3,4,5,6 4 10 40
(only

38
run)

N1 The number of hidden neurons in layer 1 2,…,106

N2 The number of hidden neurons in layer 2 2,…,10

81 10 810

N1M1 2
N1M2 6,7

7

NS

VDPH�DV�PHWKRG��
2,3

4 10 40

7DEOH������/LVWLQJ�RI�VWUXFWXUDO�SDUDPHWHUV�IRU�HDFK�PHWKRG���YDOXHV�WULHG��DQG�WUDLQLQJ�UXQV
Choice of neural network modularity
For the ASP experiments the number of phoneme classes is three. The following configurations
of the neural network in the classification system can be used. Each configuration has a total of
three outputs, one for each class:
- single neural network with 3 outputs
- 2 neural networks, network A has 1 output and network B has 2 outputs
- 3 neural networks with each 1 output

For a further discussion on modularity, see subsection 4.3.2. Because the ASP classification task
has relatively low complexity, the single neural network configuration is chosen for the ASP
experiments. The required number of output neurons per network is therefore three.

A motivation for each method will be given now.

to
ta

l n
um

be
r

of
 st

ru
ct

ur
es

re
pe

at
tr

ai
ni

ng

to
ta

l n
um

be
r

of
 tr

ai
ni

ng
ru

ns

va
lu

es
  f

or
pa

ra
m

et
er

s



�����3URFHGXUH

99

Methods 1 and 6: MLP (two-layer and three-layer)
A 2-layer Perceptron can approximate any function (subsection 4.1.4) with sigmoid transfer
functions for the hidden neurons and linear output neurons. For the current classification task
however, only output values of 0 to 1 are  required. Therefore the linear output neurons can be
replaced by sigmoid neurons that have a 0 to 1 range.

This choice is also motivated by the results in [Bishop, 1995] subsection 3.1.3 on logistic
discrimination. These state, that a sigmoid activation output function allows the outputs of the
network to be interpreted as posterior probabilities in classification. To be fully correct, actually
a VRIWPD[� function should be used (see Bishop, or subsection 3.1.3). This will not be done
because:
- the softmax function is not fully supported by the Matlab NNet toolbox and not supported by

the FIR toolbox.
- interpreting outputs as probabilities is not really needed in the experiments. Only the

maximum value of outputs is evaluated (see subsection 2.2.5) so the number itself is not
used.

The number of hidden neurons is varied from very small (1) to large (25).
A 3-layer Perceptron is also used, to see if any performance increase results from adding an

extra layer.
Methods 2 and 7: state-space neural network
In the state-space network module 1 computes the state function and should be able to
approximate any function. This requires linear output neurons and sigmoid hidden neurons.
Module 2 gives the final classification output so for the reasons given above sigmoid output and
hidden neurons are chosen.

Small values were chosen for the parameters, in order to limit network complexity and
simulation time. Method 2 uses BPTT-LM training and method 7 the Matlab Elman training
algorithm.
Method 3: FIR
The FIR neural network toolbox [Janssen, 1998S] is used. Because the FIR toolbox
implementation is fast (C code) a large number of structures could be tried. For the same
reasons as in method 1, sigmoid output neurons and hidden neurons are chosen. The hidden
neurons are tangential sigmoid (tansig) neurons.
Method 4: k-NN
The k-Nearest Neighbor (k-NN) classifier [van der Heijden, 1995] is a non-parametric
classification method that directly compares new input data to all training data stored in
memory. No training is needed. The Euclidean distance measure is used to compare feature
vectors. An odd number k is required for k-NN. Usually k is not very large (<20) for fast
classification, so k higher than 35 has not been tested. The classifier has been implemented in
Matlab in QQNBFODVVLILHU�P.
Method 5: FRNN
The FRNN requires only the choice of number of neurons and transfer functions. Because again
sigmoid outputs were desired, all neurons were chosen sigmoid neurons. Because the first 3
neurons functioned as output neurons (one for each class), N=3 neurons is the minimum number
in the network.

5.5.2  Initialization of a classifier (2)

Weight initialization
Neural network parameters (weights) are usually initialized with small random values before
training. This procedure is used for method 3 because it is default in the FIR neural network
toolbox [Janssen, 1998S].
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The default initialization used in Matlab is the semi-random Nguyen-Widrow (NW)
initialization method. The advantages over purely random weights and biases are according to
the Matlab documentation [Matlab, 1997S]:

- Few neurons are wasted (since all the neurons are in the input space).
- Training works faster (since each area of the input space has neurons).

The NW method is for all neural networks except FIR. The initialization method is listed in
Table 5.2 column f.
State initialization
All recurrent neural networks have one or more state variables, that have to be assigned initial
values. These values are the contents of the delay registers before a training epoch or before the
network is simulated with input data. State initialization is required for the recurrent networks,
methods 2, 5 and 7. In the experiments a state initialization function is used that draws weight
values very close to zero from a normal distribution (m = 0, s = 0.1). This choice was made
rather arbitrarily.

5.5.3  Training of a neural network (3)

When a neural network structure is selected and initialized, training can start. The issue that has
to be resolved now is when to stop training. A neural network can perform badly on a task if it
is either trained too little (underfitting of the training data) or trained too much (overfitting of
the training data). The decision to stop is made by the algorithm if one of the following stopping
criteria is fulfilled:
1. The performance goal (the goal value for the error measure on the training set) is met ;
2. A preset maximum number of epochs is reached ;
3. The magnitude of the gradient reaches a preset minimum value ;
4. The magnitude of either the gradient, or the error measure, becomes infinite ;
5. (only in the Levenberg-Marquardt algorithm: ) The maximum value of parameter m is

reached.
6. Validation stop.

These stopping criteria are available for all Matlab neural network implementations, except for
the FIR neural network [Janssen, 1998S]. For the FIR network only criterium 2 was originally
implemented, but criterium 5 was added to the FIR toolbox (as a new function ILUES�BYDO�P ).

For more information on these stopping criteria the Matlab documentation can be consulted.
The validation stop concept (criterion 6) is important so it will be described in more detail in
subsection 2.
Training parameters
Neural network training algorithms are controlled by training parameters. These parameters are
important because they influence the training process (for example the duration in number of
training steps), but in practice the choice is often to use a convenient set of default values, that
has proven to produce good results for a large class of training problems. The choice made can
first be verified on some small scale ‘trial and error’ experiments.

In Table 3.2 the defaults as given by Matlab are shown for two training algorithms. The basic
gradient descent backpropagation algorithm (called WUDLQJG�in Matlab) has only a learning rate
parameter. The Levenberg-Marquardt (LM) algorithm (called WUDLQOP) has four parameters.
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traingd (Standard gradient descent algorithm) ; can be used by methods 1, 2, 3,
5, 6

Parameter Description Default
value

lr learning rate 0.01

trainlm (Levenberg-Marquardt algorithm) ; can be used by methods 1, 2, 5, 6
Parameter Description Default

value
mu factor that sets the balance between the Gauss-

Newton method and standard gradient descent.
0.0010
(initially)

mu_dec decrease factor for mu 0.1
mu_inc increase factor for mu 10
mu_max maximum value of mu 1010

7DEOH������7UDLQLQJ�SDUDPHWHUV�IRU�WUDLQJG�DQG�WUDLQOP
Note that other Matlab training algorithms (e.g. WUDLQJGD, WUDLQJG[�etc.) are not shown because

these are similar to WUDLQJG. Information on what algorithms can be used by which neural
network types can be found in the documentation of each Matlab toolbox.
For the ASP experiments, the LM algorithm was used in most cases, with default parameter
values. This choice was motivated by the speed of the LM algorithm: In all Matlab code
implementations normal gradient descent is very slow for recurrent networks and for a large
number of training epochs. LM has far less floating point operations (see [Peelen, 1999] for a
comparison) and it uses very little epochs, and is therefore fast. More information about the
Levenberg-Marquardt algorithm is given in section 4.3.

If the ModNet or NNet toolbox would have been written in C code the standard gradient
descent algorithm could have been used. The FIR toolbox (written in C) shows that standard
gradient descent in C code is much faster than any Matlab algorithm.
Training set
The training set used consists of 15 phonemes (5 of each class). The phonemes are put in a
semi-random order that is fixed (not changed during the training process, in fact the order is the
same for all ASP experiments with all network types).

For static neural networks and the k-NN classifier the order of the phonemes in the training set
has no influence at all as each frame is dealt with independently. For dynamic neural networks
the order highly influences the training process because past frames have influence on the
classification.

The training set holds the input patterns and the targets. The Q=1…N input patterns p(Q) each
hold 12 mel-cepstral coefficients p i(Q) , i=1…12. The N target patterns t(Q) each hold 3 target
values ti(Q), i=1…3, one for each output of the neural network. Each target value corresponds to
the class that the input pattern belongs to (1, 2, or 3 respectively). The target t i(Q) is 1 if the
pattern p(Q) is of class i and zero otherwise:

class target
1 t(n) = [ 1 0 0 ]
2 t(n) = [ 0 1 0 ]
3 t(n) = [ 0 0 1 ]

Note that each pattern (of 12 coefficients) is calculated from one speech frame. With the fixed
phoneme duration of tPH = 0.3(s) or NS=4800 samples, the number of frames obtained with the
Voicebox software is:
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with the frame size N = 256, frame interval I = N/2 = 128 and the IL[� operation (Matlab)
rounding down towards the nearest integer value. This is the maximum integer number of
frames that can be extracted out of the sequence. The last { NS-(NF+1)*I } =  64 samples at the
end of the phoneme sample sequence are not used because another N-sample frame can not be
completely filled.

The training set has 15*NF = 540 patterns in total. Each phoneme of 4800 samples is reduced
to NF*12 = 432 mel-cepstral coefficients.

5.5.4  Using a validation set (4)

The concept of the YDOLGDWLRQ�VHW is explained here in a qualitative way. A good mathematical
treatment of this technique was not found, but should exist in literature because the technique is
widely used. (see [Bishop, 1995] for the similar FURVV�YDOLGDWLRQ�technique.)

During training the performance of the neural network on an independent validation set is
measured over time. The validation set consists of input data and targets like the training set, but
it is independent, which means the data used in this set is different from the training set and this
data is not used in the training algorithm.

The error made by the neural network on the training set obviously decreases during training
because the algorithm will try to minimize this error. It is very likely the error made on the
validation set also decreases because the ‘general properties’ of the training set are learned first.
The general properties of the training data that are learned are also beneficial to the performance
on the validation set.

At a certain point, the error on the validation set may start increasing. This happens when the
neural network learns not only the general properties of the training data but also learns features
that are highly specific only to the training set (i.e. the overtraining effect has started). So at the
minimum of the validation error, training should be stopped because the expected error on
future data sets is minimized at this point. The performance on the validation set effectively is
an estimate of the generalization performance of the neural network. This quantity is what one
would like to have minimized.

The validation stop was used in the ASP experiments. It was the most important stopping
criterium, because the performance goal was set zero (effectively disabling this criterium) and
the number of epochs was chosen very high (which ensures training is not stopped too early by
the epochs stopping criterium).

But the training does not stop right away when an increase in the validation set error is
observed: A parameter called PD[BIDLO� states how many epochs the training algorithm should
continue, despite of an increasing validation set error. During this period it can happen the
validation set error starts decreasing again and training can proceed. However, when no
decrease is observed, the training process is stopped after PD[BIDLO  epochs. The training
procedure finally returns the neural network weights, that led to a minimum value of the
validation set error.

A small validation set was used of 3 phonemes (one of each class) in the class order 1, 2, 3.
The PD[BIDLO parameter was set to 25 in most cases.

5.5.5  Repeated training (5)

Convergence of a neural network training algorithm (based on gradient descent) to a global
minimum is never guaranteed. Instead a sub-optimal local minimum can be the result of a
training procedure.

For this reason the training of a network is repeated some times in most experiments. This
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- increases the possibility of finding at least one solution either at the global minimum or at a
good-enough local minimum.

- gives some insight into the success rate of the algorithm: how often does the training
procedure succeed or fail.

For each experiment a different random initialization of the weights (see step 2) is used. A
typical repeat value used in the experiments is 10. See table 3.3 for the repeat values.

5.5.6  Evaluation of performance using a test set (6)

Finally the performance of a trained neural network should be evaluated. The best way to do
this is with an independent test set. The validation set cannot be used for evaluation, because the
neural network  may have overfitted the validation set. This can occur because the validation
stop procedure selects for the neural network that minimizes the error on the validation set.

The independent test set used in the ASP experiments has 6 phonemes of each class (18 in
total). It contains 18 * NF = 648 patterns p(Q) (see equation 3.3). No postprocessing will be done
on the outputs.

The simplest way to describe the performance (in a single number) on the test set is either the
classification frame success rate or the classification frame error rate. The success rate will be
used in this report. The same method was used in [ten Hove, 1996] and [Janssen, 1998] for
evaluating a speech recognition system.

The frame success rate is calculated by evaluating the classification decision for each frame:
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The number of errors NERRORS is the number of frames for which the maximum i th neural
network output at frame Q, yi(Q), is not equal to the maximum target value d j(Q), that is:
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It should be kept in mind this is a crude method of comparing performance. The actual
performance of the neural network when placed into a full speech recognition system can be
different, because in a full system a large amount of postprocessing is performed that can ‘undo’
some types of errors, for example.

Also the precise moment of phoneme transitions has influence on the performance value,
when using the above method. But for real speech the precise moment in time that one phoneme
stops and the following starts is often not well-defined.

It can be concluded that for a full speech recognition system evaluation a different evaluation
method should be used. The Insertion/Deletion/Substitution error method in [Robinson, 1994] is
the standard. However, the simple performance measure is of good use in the ASP experiments
to get some insight into the performance of the ‘bare’ neural networks without pre-processing.

5.6  Results: Artificial phoneme recognition experiments

The results of the ASP experiments are presented in this section. In subsection 3.3.6 one result
for a state-space network (a single structure) will be examined in detail. In subsections 1 to 3.4.2
the results for the 7 classification methods will be summarized. The results for all methods are
summarized and compared in subsection 3.4.1. A list of methods, structures and parameters was
already given in the previous section.
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5.6.1 Results for a single state-space neural network structure

In this subsection the results of an initial ASP experiment with a state-space neural network will
be discussed. These first results will be shown in this subsection in more detail than the rest of
the experiments.

The method 2 structure is trained and has parameters N1=2, N2=5 and NS=3. Both modules
contain 2 layer static networks. Both modules have logistic sigmoid units in the hidden layer.
The output neurons yi also have logistic sigmoid units which keep the output between zero and
one. The state neurons (the outputs of module 1) are linear neurons. The structure is visualized
in figure 2.12.

)LJXUH������7KH���OD\HU�VWDWH�VSDFH�QHXUDO�QHWZRUN�VWUXFWXUH
The structure was trained with the training set described in the previous subsection, using the
Backpropagation Through Time algorithm with Levenberg-Marquardt algorithm (BPTT-LM) of
the ModNet toolbox. The training record which shows the performance of the network as a
function of the number of epochs trained, is shown in figure 2.11.
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Both the performance on the training set (dark curve) and the validation set (light curve) are
shown. For both the errors decreases comparably in the first 9 epochs of training. From epoch 9
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on the error on the validation set decreases only minimally while the error on the training set
continues to drop. The reason the training eventually stops after epoch 22 is stopping criterium
number 5 (‘maximum mu reached’).

The validation error is smaller than the training error for all epochs because the validation set
is five times smaller than the training set. This means the SSE, that depends on the number of
examples and example lengths, is also smaller (also five times smaller for epochs 0 to 9).

The trained network is then simulated with the independent test set data. The output of all
three outputs are plotted versus time Q in figure 3.4.
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The dark curve (the ‘square wave’) is the one/zero target ti(Q). The grey lines are the outputs of
the neural network at each time Q. The points in time where the network generates a wrong
classification are marked with an ‘x’ placed near the x-axis. Outputs and targets are discrete
points but they are connected for visibility.
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The performance on the test set (rounded to 3 significant digits) was 91.0 %  (590 frames
classified correctly, 58 frames wrong). It is clear from the figure that some postprocessing
would be useful for this particular network, to smooth the output signals and remove some of
the ‘spikes’ and thereby reduce the error rate.

In the following figure (3.2), the classification decision is plotted for each frame Q so the effect
of the spikes on the decision can be observed.
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The real class is plotted as a continuous line for clarity. The classification decision for each
frame is marked with an ‘x’. All phonemes in the test set are detected, but occasionally the
classification oscillates between class 1 and 3.

5.6.2  Method 1: Static two-layer neural network (MLP)

Because only one structural parameter has to be chosen, the results for method 1 (the two-layer
MLP) can be straightforwardly plotted. Figure 2.13 shows the performance (equation 3.1) of 10
times 25 trained neural networks on the test set for the 25 different values of the parameter N 1.

The success rate varies widely. The most successful networks are grouped in a ‘band’ around
the 90% value. There are relatively few networks in the 70-85% region. A number of networks
clearly perform sub-optimal because they lie far below the upper ‘band’.

The reason of the stop (see subsection 3.1.1 for stopping criteria) of the training procedure was
not recorded during this experiment because the NNet toolbox does not provide for this, so it
was not investigated if one of the stopping criteria perhaps gave rise to these sub-optimal
networks.
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)LJXUH� ������ 0HWKRG� ��� FODVVLILFDWLRQ� SHUIRUPDQFH� RI� ���� QHWZRUNV� �RQ� WKH� WHVW� VHW�� DV� DIXQFWLRQ�RI�YDU\LQJ�QXPEHU�RI�KLGGHQ�QHXURQV�11

The influence of the number of hidden neurons N1 is visible. For the values 1 to 4 the
performance of the group of best performing networks increases. For N1=5 or higher, the top
performances fluctuate, but stay approximately the same and there is not much influence of N 1
on performance. The number of ‘suboptimal’ networks decreases a bit with higher N 1.

The performance of the best neural network on the test set was 95.8% for N1=19.
Distribution of performance values
An interesting observation is that the performance values of the networks that score around the
93% value (the successful band) seem normally distributed. This was visually checked using the
Matlab QRUPSORW and ER[SORW� functions. This indicated that the performance values in the 91-
96% band are indeed almost normally distributed (m = 93.2% ; s = 1).

5.6.3  Method 2: the state-space neural network

The results for the state-space neural network are visualized in figure 2.4 the same way as for
the previous method. This time the number of the structure used is plotted on the horizontal
axis. Each unique combination of the three parameters corresponds to a different structure
number. Directly plotting parameters versus performance is impossible because it would require
a 4-dimensional plot.
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The parameters that describe each structure are listed in table 5.5 together with the structure

number.

Structure number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

N2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

NS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Structure number
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

N2 7 7 7 7 8 8 8 8 3 3 3 3 4 4 4 4

NS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

7DEOH������6WUXFWXUDO�SDUDPHWHUV�DQG�FRUUHVSRQGLQJ�VWUXFWXUH�QXPEHU
It can be seen in the figure that the structure does have some influence on the performance
measured. The small structures 1 to 4 do not perform as well as most of the larger structures 5
and higher.

5.6.4  Method 3: 2-layer FIR network

The results for the FIR neural networks are depicted in figure 3.8. There are almost no ‘failed’
training runs, which can be attributed to the use of standard backpropagation instead of the LM
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algorithm (which often stops on stopping criterium 5). Note the y-axis scale of the figure is
different than for the previous methods.

There is a relation between the structure used and the performance. The smaller networks
(structures 1-25) perform worse than the subsequent larger structures.
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)LJXUH�������0HWKRG����FODVVLILFDWLRQ�SHUIRUPDQFH�RI�����QHWZRUNV��RQ�WKH�WHVW�VHW�
The parameters for each of the 150 structures are not listed in this report. To see which
parameters lead to the best performance, the values of the three parameters N1, T1, T2 are plotted
as a function of the performance value in figure 3.9. This rectangle plot is a semi-3D plot.
Bigger rectangles correspond to more neural networks that fall into the category plotted on the
axes.

The y-values of the data points in the plot were obtained by counting the occurrence of
parameter values of all networks, whose performance falls into the corresponding ‘bin’ on the x-
axis. The x-axis bins were chosen at a distance of 0.5 of each other (so there are four
bins/rectangles for every two percent performance increase).

Such a figure shows general trends (if any) about the relationship between performance and
parameter values. From the upward trend in figure a) it can be concluded the most successful
networks have a larger number of neurons N1 (about 5-7). Figures b) and c) show a downward
trend so good performance is obtained with small delay registers T 1 (about 2) and T2 (about 2 or
3). Note that only the combination of large N1 and small T1, T2 gives the best performance.

An explanation for this could not be thought of because one would say higher parameters T i
allows the network to use data of more time steps which aids the classification of the transitional
phoneme signals.
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5.6.5 Method 4: the Nearest-Neighbor classifier

The performance on the test set for the various values of N used is plotted in figure 2.14.
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The circles mark actual performance values for values of N used. These points are connected by
a line for clarity.

With the k-NN method, the parameter is often selected by trial-and-error [van der Heijden,
1995]. In this case k = 3 performs best with 94.9% correct on the test set. For other test sets
however, another value of k gave the best performing classifier. To obtain the best value for k, a
number of test sets could be tried and results averaged. This averaging was done over four test
sets (including the original one). The result is given in the figure (grey dotted line). Again the
best choice was N=3 but the mean values do not differ very much, so the choice of k is not
critical.

5.6.6  Method 5: FRNN

The results of method 5 (the FRNN) are presented in figure 2.16. For N=5 the best result is
obtained (96%), but the variation in the results of different networks (with the same structure) is
high.

5.6.7  Method 6: three-layer MLP

For the 3-layer MLP no clear link between parameters and performance was found, except that
N1 should be �4 for best performance. The top ten performing networks had both N1 and N2
between 4 and 10. The results are not shown here graphically because results were similar to the
2-layer MLP.

The best performing network had N1 = 10 and N2 = 9 and scored 96.1%.
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)LJXUH� ������ 0HWKRG� ��� FODVVLILFDWLRQ� SHUIRUPDQFH� RQ� WKH� WHVW� VHW� ZLWK� YDU\LQJQXPEHU�RI�QHXURQV�1
5.6.8  Method 7: State-space network trained with Elman algorithm

The structure of the state-space network from method 2 is used. This structure can be easily
implemented in the Matlab Neural Network Toolbox and trained with the supplied Elman
training algorithm (see subsection 3.7.1 about this algorithm). The algorithm can be seen as a
simplified version of the RTRL algorithm.

It would be interesting to know how this algorithm performs on the classification task.
Therefore the best state-space neural network structure (see subsection 3.3.1) was taken and
trained 10 times, this time with the Elman algorithm. The best performing network scored
98.1% on the test set.

Three more structures were tried but not more, because the implementation of the Matlab
Elman algorithm for recurrent and time-delay networks is very slow.

5.6.9  Comparing methods

In this subsection the methods are compared. The results presented here will be used in the final
conclusion on the ASP experiment in section 3.1.3.

For each method, the best network is taken for further evaluation. The performance figures on
the test set of these best performing networks, which were already listed in the preceding
subsections, are summarized in table 5.6 (column d).
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a b c d e f
Method exper

iment
ID

Network
type

Performance
on test set of
best network
(%)

Structure of best
network

Number of
weights in
network

1 1 2-layer MLP 95.8 N1 = 19 307
2 6 state-space

(BPTT-LM)
98.8 NHM1=2 ; NHM2=6 ;

NS=2
147

3 9 FIR 97.7 N1=5 ; T1=2 ; T2=3 173
4 4 k-NN 94.9 k=3 -
5 2 FRNN 96.1 N=5 90
6 8 3-layer MLP 96.1 N1=10 ; N2=9 259
7 11 state-space

(Elman)
98.1 NHM1=2 ; NHM2=6 ;

NS=2
147

7DEOH������%HVW�SHUIRUPLQJ�QHWZRUNV��SHUIRUPDQFH�DQG�VWUXFWXUH
The best network structure is also given for reference (column e). The total number of weights

in the network (i.e. the number of free parameters of the system) is listed in column f.
But different test sets lead to a different performance number. Therefore, the methods were

tested using more test sets. Because new data for the test sets can be created easily, a large
number of 100 additional test sets was used. The results are given in table 5.7. The mean
performance over all 100 test sets is listed in column c. The performance values of table 5.6
(column d) are listed again in column b for comparison.
 

a b c d e
Method perf. of

table 5.6
(%)

Mean perf
m over 100
test sets
(%)

Std.
deviation
s of perf
(%)

95 % confidence
interval on the
mean m (%)

1 95.8 93.7 1.3 93.4 -   93.9
2 98.8 97.4 1.1 97.2 -   97.7
3 97.7 94.4 1.4 94.1 -   94.7
4 94.9 92.1 1.2 91.8 -   92.3
5 96.1 94.6 1.9 94.3 -   95.0
6 96.1 93.8 1.3 93.6 -   94.1
7 98.1 96.0 1.6 95.7 -   96.4

7DEOH� ����� 3HUIRUPDQFH� ILJXUHV� RI� PHWKRGV� RQ� WHVW� VHW� DQG� ���� QHZ� WHVW� VHWV�UHVSHFWLYHO\
The large number of test sets allows the use of statistics to get some more information about

the performance. Using the Matlab function QRUPILW the standard deviation s was estimated (see
column d) and the 95% confidence interval for the mean m was calculated (see column e). A
normal distribution was assumed. The normality of the distribution of performance figures was
visually checked using the Matlab QRUPSORW�and ER[SORW�functions.

These values are visualized in figure 2.6, where the circles represent the mean performance
(column c) and the whiskers represent the 95% confidence interval of the mean (column e).
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The relation between the classification success rate and the (mean) number of weights in the

neural networks with a certain success rate is visualized in figure 2.5. Each mean value
calculated is marked with a circle or cross. The marks are connected for visibility. The five lines
are plotted in three separate figures for visibility. Each mean value is calculated by
histogramming, i.e. averaging the number of weights over all neural network structures that fall
into the 0.5%-wide bin on the x-axis. The x-value of each data point is the location of the center
of one bin.

The figure makes the ‘performance divided by the number-of-weights’ ratio visible. (This will
be called the S�Z�UDWLR). A higher value means that less weights are needed in a neural network
to obtain equal performance, so the network has learned a more compact/efficient representation
of the relation between input data and targets. It can be concluded from this figure for the best-
performing networks (>90%), that the general order from best to worst p/w-ratio is:
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)LJXUH�������5HODWLRQ�EHWZHHQ�SHUIRUPDQFH�UDWH�DQG�PHDQ�QXPEHU�RI�ZHLJKWV�IRU�ILYH�GLIIHUHQWQHXUDO�QHWZRUN�PHWKRGV

1. FRNN
2. state-space network (BPTT-LM)
3. state-space network (Elman)
4. 3-layer MLP
5. FIR network
6. 2-layer MLP

Note that for performances >95%, positions 4 and 5 are swapped.

5.7  Results: Preliminary speech classification experiment

The classification experiments were repeated with real speech signals instead of artificial ones.
The same setup of a three-class classification system is used. The three classes are the phonemes
/ay/ , /ey/ and /iy/ which are also the phonemes that were the models for the artificial phonemes.

The phoneme sounds were obtained from the Timit database. They were selected randomly
from a series of ten different sentences spoken by five different male speakers from the dialect



&KDSWHU����3KRQHPH�UHFRJQLWLRQ�H[SHULPHQWV

116

region 1 (see Appendix D for information on Timit). Figure 2.15 shows the spectrograms of
example phonemes, one of each class, taken from the Timit database.
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The contents of the training-, validation and test sets is shown in Table 5.8. For each class both
the number of phonemes is listed and the resulting number of mel-cepstrum data frames. The
numbers of phonemes were chosen such, that the number of frames of each class would be
approximately the same.

class 1
(/ay/)

class 2
(/ey/)

class 3
(/iy/)

number of phonemes
in training set

8 13 14

number of frames in
training set

120 136 114

number of phonemes
in validation set

2 4 7

number of frames in
validation set

45 48 44

number of phonemes
in test set

6 8 12

number of frames in
test set

109 89 99

7DEOH������3KRQHPHV�XVHG�LQ�WKH�WUDLQLQJ���YDOLGDWLRQ��DQG�WHVW�VHWV�
After training the networks the test set is used to assess the performance. The results are shown
graphically in figure 2.17.
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The 7 different methods used are set out horizontally. The classification success rates are plotted
on the vertical axis. The crosses correspond to individual neural network performance results:
each network is the result of a separate training run.

For this task the 3 layer MLP and the FIR network are performing best. The spread in the
results is high: this is partly caused by the many different structures that were used. These
results were not extensively studied so no evaluation of the different structures is done.

The performance of the best network of each class is listed in Table 5.9.

Method Best performance
on the test set (%)

1 75.0
2 81.1
3 82.8
4 72.4
5 81.1
6 83.5
7 81.1

7DEOH������3HUIRUPDQFH�YDOXHV�RI�WKH�EHVW�QHXUDO�QHWZRUN�IRU�HDFK�PHWKRG
It can be concluded that the expected advantage of recurrent networks for dynamic classification
does not clearly show in the results. To isolate a possible problem in recurrent network training
more experiments should be done in a systematical way (this experiment is only preliminary).

Using delta features in phoneme recognition
As was explained in subsection 2.2.3 the delta or delta-delta features are often added to the mel-
cepstrum feature set to obtain better recognition of transitional phonemes. A new mel-cepstrum
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feature set with 12 delta coefficients added was used in a small scale experiment with only a
few neural network structures. The following best networks were obtained:

Method Best
classification
performance (%)

Best network
structure

two-layer MLP 85.2 N1 = 4

state-space network
BPTT-LM

79.1 k = 9

k-NN classifier 85.9 N1 = 2 ; N2 = 5 ;
NS = 2

7DEOH�������&ODVVLILFDWLRQ�H[SHULPHQW�UHVXOWV�XVLQJ�PHO�FHSVWUXP�DQG�GHOWD�IHDWXUHV
It can be seen that the best performance can be increased for each method by adding delta
features. The delta-delta features were not tried.

5.8  Conclusions

Best network
The results in table 5.7 and figure 2.6 clearly show the state-space architecture performs best.
The confidence interval calculations can be used to state it is 95% certain, that the state-space
network trained with BPTT-LM performs at least 2.2% better that the number two network
structure, the FRNN.

The FIR network performance is close to the FRNN. The 2 and 3-layer static networks
perform worse than the FIR network with 95% certainty. The k-NN has worst performance.
Variation in performance
The state-space neural network also scores best in the estimated standard deviation s of
performance values over 100 test sets (see table 5.7) because the value is smallest. This means
that the state-space network looks like the most reliable method because the variation of the
performance over different sets of data is smallest.
Performance versus number of weights
The comparison of the p/w-ratio in subsection 3.4.1 confirms the common assumption found in
recurrent neural network literature [Bengio, 1996] [Robinson, 1994], that recurrent networks
can perform equally well as static neural networks or time-delay networks (like the FIR
network), while less weights are needed. Recurrent networks thus offer a more compact
representation of a relation between input data and target than other network types.

Given the above results of the ASP experiments, recurrent neural networks seem a promising
approach to phoneme recognition. However, the possibility of using delta and delta-delta mel-
cepstrum features was not investigated. These features can be used to provide some dynamic
processing capability to static neural networks.

Preliminary experiments on phoneme recognition
On phoneme recognition the FIR neural network and the 3-layer static MLP performed best.
The state-space networks used did not perform very well compared to the other  types.

Using delta mel-cepstrum features clearly increased performance: actually a static network
trained with delta-features performs better than any recurrent network trained without delta
features.
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The available time did not permit an investigation of all possible causes of the mediocre
performance of the recurrent networks at this task. Instead, only a few possible causes of
problems for recurrent networks are given here:

- the one/zero targets are not the best choice, other target types could be used
- the size of the training set can be made larger. (The set used is actually quite small. In a

full speech recognition systems it is not uncommon that a large part of the speech
database is used in training.) Recurrent networks may need more training data than static
networks because interdependencies between input data frames have to be learned.

- other network structures could give better results. The complexity of this real speech task
is higher than for the ASP experiments so this suggests network structures should be
made bigger.

- the performance may depend on training parameters. Not many different combinations of
training parameters were tried so there may be still room for improvement in making this
choice. Specifically, the parameter PD[BIDLO� used in the validation stop criterion has a
large influence on when training is stopped.

- the training data is currently presented to the network in one big sequence because this is
required for the LM algorithm. However, partitioning training data into multiple epochs
is the usual way of training. Then, the sequences can be presented to the network in a
random order. (To try this, the standard gradient descent training method could be used.)
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

In this chapter the final conclusions of this report will first be presented. These conclusions are a
summary of the individual conclusions that were given at the end of previous chapters.
The second part of this chapter gives recommendations for continuation of research in dynamic
neural networks and applications to speech recognition.

Conclusions

The aims of this assignment were listed in section 1.3. In the following conclusions references
will be made to these (numbered) aims to show what work was done on each one of the specific
aims.
Investigation of recurrent neural network structures and training algorithms (aims 1, 3)
5HFXUUHQW�1HXUDO�QHWZRUN�DUFKLWHFWXUHV
Several types of recurrent neural networks have been listed in this report. Because some
architectures offered a more general description than others, a hierarchical ‘classification’ of
these networks could be made (see figure 2.1).

The most general description of architectures is offered by the general modular network
framework. This framework was not directly implemented into software for two reasons: first to
avoid a complex (and error-prone) program and secondly to keep acceptable speed of the neural
network training and simulation in the Matlab environment.

The state-space network was selected as second-best because it holds some other often-used
architectures as special cases. It was found these special cases were used in literature for
phoneme recognition tasks. It was shown (chapter 4) that the FRNN, a special case of the state-
space network, can not simulate all state-space systems.
1HXUDO�QHWZRUN�PHWKRGV�IRU�VSHHFK�UHFRJQLWLRQ��DLP���
During the survey of neural network architectures special attention was paid to the application
of speech recognition. References to existing methods were given.

There exist more neural network architectures that are not included in this report. Specific
examples of structures that were not investigated, are:

- Adaptive neural network structures (see ‘training algorithms’ below)
- Higher-order neural networks (which use multiplicative combinations of inputs as

additional inputs).
- The relation between Recurrent Neural Networks and Hidden Markov Models (HMM).

Recently the hybrid ANN/HMM structure [Bengio, 1995] was introduced, a structure that
combines an Artificial Neural Network (ANN) with a HMM.

,PSOHPHQWDWLRQ�RI�WKH�VWDWH�VSDFH�QHXUDO�QHWZRUN
The state-space network was implemented in a Matlab toolbox (ModNet) together with training
algorithms (see below). The options to IL[�or SUXQH�(see subsection 2.2.3) arbitrary connections
is provided. This allows sub-types of the state-space network to be trained and simulated. These
include the FRNN, the PRN, the multilayer RNN, the state-space SRN and the multilayer
FRNN.
7UDLQLQJ�$OJRULWKPV
Training algorithms for recurrent neural networks have been investigated. The Backpropagation
Through Time (BPTT) and Real-time Recurrent Learning (RTRL) learning algorithms have
been the main focus.
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Both learning algorithms were given for FRNN, state-space networks and the general case of
the modular network framework. This implies they can be used with all neural network
structures in this report which are specific cases of the modular network framework.

As the best algorithm for a phoneme recognition task BPTT was chosen, because:
- training for a speech recognition system is off-line (not real-time) so that epochwise

training can be used. Epochwise BPTT has some advantages over epochwise RTRL,
which will be listed below.

- Epochwise BPTT performs an exact minimization of the error measure over an example
sequence (while RTRL performs an approximate minimization)

- the computational requirements for epochwise BPTT are less than for RTRL in a typical
phoneme classification task

- The epochwise BPTT algorithm can be combined with the second-order Levenberg-
Marquardt (LM) training algorithm. LM can speed up certain learning tasks dramatically.

The following training approaches were not investigated:
- Algorithms for automatic structure adaptation and automatic modularization.
- Other neural network training paradigms such as information-theoretic principles (MMI,

MDL), 6XSSRUW�9HFWRU�0DFKLQHV�and %D\HVLDQ�,QIHUHQFH�(listed in subsection 3.1.2).

Implementation of the BPTT and RTRL algorithms for state-space networks
Both the BPTT and RTRL algorithms, and a combined BPTT / Levenberg-Marquardt
algorithm (for speeding up training), were implemented in a Matlab toolbox (ModNet). The
modular setup of the state-space network structure and algorithms allows for an extension of the
software to other modular networks.

Initial experiments on linear and non-linear system identification tasks were performed to test
the algorithms. The Matlab code runs at an acceptable speed but is still much slower than a
implementation in C would be.
Classification capabilities of recurrent neural networks (aim 2)
Classification capabilities of recurrent networks were investigated. It can be concluded that
there exists no thorough mathematical treatment in literature of sequence classification (it was
not found, anyway) and how recurrent networks can perform such classification. Some ideas
about this were given in section 4.2.

Dynamic neural networks (both time-delay networks and recurrent networks) have an
advantage over static neural networks because of their ability to process sequences of data
instead of stand-alone data patterns only.

An advantage of recurrent networks over time-delay networks is their ability to process (and
therefore classify) sequences of variable length.
Classification experiments using recurrent neural networks (aims 2, 3 and 4)
The state-space neural network was evaluated in an experiment (the ASP experiment, see
chapter 5) against other neural network approaches and one non-neural approach. For this
classification task artificial ‘speech’ signals were used.
)HDWXUH�H[WUDFWLRQ��DLP���
To obtain a feature extraction front-end for the phoneme recognition system, existing speech
recognition methods were first studied. The standard mel-cepstrum method was chosen and
described in this report.
5HVXOWV
From the ASP experiments it can be concluded the state-space network outperforms the other
approaches. Recurrent networks performed best, followed by time-delay networks, followed by
static neural networks. So state-space networks are promising for use in phoneme recognition.

A comparison of the number of weights versus performance in the neural networks used,
confirms the general assumption (in literature) that recurrent networks offer a more compact
representation of an input-output data relation than non-recurrent network types.
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Using recurrent neural networks for phoneme recognition (aim 4)
The preliminary experiment on phoneme recognition did not show a performance advantage for
the recurrent neural networks. The experiments with delta features suggest that the conventional
static neural network can be upgraded with dynamic classification capabilities. More
experiments will be needed to find out which method eventually performs best in a real speech
recognition system.

To aid future research into phoneme recognition, a Matlab toolbox (Timit_Tools) was created
that enables the use of Timit speech data in Matlab.

Recommendations

Recommendations for future research on neural networks

Neural network structure selection
The more general a neural network architectural description is, the more structural choices are
left to the user of the network. It should be investigated what guidelines should be followed to
select a structure. Besides ‘manual’ selection, an algorithmic (automated) structure
selection/adaptation procedure is also a possible option.
Neural network analysis
When a fully trained neural network is used to perform classification of data, the network
‘interior’ can be analyzed. For example, it may be possible to find out how each neuron is
contributing to the classification. Another example is to analyze the meaning of the state in a
state-space network. In other words: investigate KRZ a neural network performs its task and not
only how well.
Targets for neural networks trained for a classification task
In this report the most simple option was used for the training targets for a classification task:
one/zero targets (see subsection 4.3.3 for possible target choices). The most interesting option
for classification seems partial or weighted supervision, combined with double threshold targets.
Within this project no experiments could be done yet to test such targets so it would be
interesting to evaluate these on performance. Note that a different way of performance
measurement (given below) is really needed when using partial supervision targets.

Recommendations for future research on neural network based speech recognition

Evaluating recurrent neural networks for speech recognition
To measure how recurrent networks perform in a real speech recognition task, the best thing to
do would be to use these networks in an existing (possibly neural network-based) speech
recognition system. The performance could then be compared to that of the original system,
using non-recurrent networks.
Performance measurement in phoneme recognition experiments
Performance on phoneme recognition was measured using the rather simple frame error rate
(defined in subsection 5.5.6). It has some disadvantages. Future experiments should use the
standard phoneme INS/DEL/SUB (Insertion, Deletion, Substitution) errors system [Robinson,
1994] to be able to compare results with literature. The easiest way to implement this is to use
an existing speech recognition system as suggested above.
Feature extraction
Of course a new speech recognition system can be created instead of using an existing one. In
that case the feature extraction methods should be carefully chosen. Different phoneme types
may need a very different treatment.
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Phoneme recognition
In this report the assumption is made that phoneme recognition is used for any large vocabulary
speaker independent speech recognition system. Phonemes are the ‘basic units’ of speech. In
more recent years another ‘basic unit’ of speech has been investigated for use in speech
recognition: the bi-phone. Bi-phones model all possible transitions from one phoneme to the
next. Undoubtedly, other basic units have been used (e.g. tri-phones) and research still continues
on the problem what features are best and on how humans recognize speech.

It is recommended that recent literature is investigated, to find out what basic unit is most
appropriate for speech recognition.

Minor recommendations

Levenberg-Marquardt training algorithm for classification
It should be investigated whether the Levenberg-Marquardt algorithm is really appropriate for a
classification task. In the experiments the LM algorithm did often stop early during training
yielding a suboptimal weight vector, whereas the standard gradient descent algorithm did not
make many suboptimal stops.
Gradient calculation routines can be tested with the finite differences method
Although the gradient calculation routines in the ModNet toolbox were tested by comparing
them with Matlab NNet calculations (see Appendix E), the easiest method is calculating ILQLWHGLIIHUHQFHV (i.e. making a small change in each weight, one at a time, and measuring the
corresponding change in the error measure). It is strongly recommended that if new training
algorithms are to be implemented, they are tested on correctness using this method. It can
always be used, no matter how complex the network/algorithm.
Psycho-acoustic processing
As was stated in subsection 5.3.3, psycho-acoustic processing can be quickly tested in any
speech recognition system. The performance increase may be worth the try.
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Software
Software references are marked [<name>, <year>S]

Matlab version 5.2, (1997 S)
using Matlab Neural Network toolbox (NNet) version 3.0. Matlab name: ‘nnet’.

Matlab Control System toolbox version 4.1: Matlab name: ‘control’.
Matlab Statistics toolbox version 2.1.1. Matlab name: ‘stats’.

Brookes, M., (1998 S), VoiceBox toolbox for Matlab version 1.0, 1998. Matlab name: ‘voicebox’.  Website:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

Dijk, E.O., (1999 S), ModNet modular state-space neural network toolbox version 1.0, 1999. Matlab name:
‘modnet’.

Dijk, E.O., (1999 S), TIMIT tools toolbox version 1.0, 1999. Matlab name: ‘Timit_Tools’.
Janssen, M.J., (1998 S), FIR neural network Matlab toolbox version 2.0, 1998. Matlab name: ‘fir’.

(The toolboxes except the NNet toolbox can be found in the user directory in users\dijk\matlab.)
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APPENDIX  A - ARCHITECTURES

A.1  SRN written as state-space networks

Here it is shown for two SRN structures that they can be written as state-space networks.
Definitions
The following vector functions are defined, that each describe the computation of the layer
output y..(Q) of the neural network given the input vector x..(Q) to the layer at time Q:

- input layer function yI(Q) = FI(u(Q))
- hidden layer function yH(Q) =FH(xH(Q))
- output layer function yO(Q) =FO(xO(Q))
- context layer function yC(Q) =FC(xC(Q))

The state of all SRN is the input to the context layer xC(Q). a is the parameter vector of the
feedback weights ai.
SRN example a)
Given the definitions the computation by SRN example a) (figure 2.10a) can be written as:

}))(()),1(([{)( ]uFyFFFy ,+&+22 QQQ -=  (A.1)

This equation can be separated into a state-space process equation FS(.) and an output equation
GS(.):
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SRN example b)
}))(()),1(),1(([{)( ]uFyyFFFy ,2+&+22 QQQQ --= (A.3)

This equation can be separated into a state-space process equation FS(.) and an output equation
GS(.):
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The two above state-space descriptions show that there is no clear separation between two networks (one
that computes the process equation and one that computes the output equation), because several layers
(like FH, FC and FI ) appear both in the process equation and in the output equation.

A.2  Two-layer RMLP cannot be described by the BFN
framework

The two-layer RMLP structure (subsection 2.4.1) will be used as an example of a recurrent
network that can not be described by the BFN framework (subsection 2.4.2).
7KH�50/3
The two-layer RMLP operates with the following equations (one for each layer):

))()1(()(
))()1(()(
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(A.5)

The connections of layers and external inputs/outputs impose the restrictions:
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Now we have:

))()1(()(
))()1(()(
QQQ

QQQ
��H[W�H[W

H[W����

yByAFy
uByAFy

+-=
+-=

(A.7)

The output can also be written as a function of input and network state only:{ })))()1(()1(()( QQQQ H[W����H[W�H[W uByAFByAFy +-+-= (A.8)

%)1�UHFXUUHQW�QHWZRUN
To model the recurrent connections of the RMLP, the BFN ‘feedback’ block is used. One
feedback block realizes the equation:

)))()1((()( QQQ uByAFN1y ¼+-¼= (A.9)

where N1(.) the function realized by the embedded block N1.
Both recurrent connections of the RMLP must be modeled so two feedback blocks are needed.

The first will be called N1 and the second N2. Block N2 is embedded into N1. Block N2 must
also have an embedded block, but as no more recurrent connections are needed a ‘dummy’
block N3(u3(Q)) = u3(Q) is taken. The intermediate sums si(Q) of each block L are defined as the
result of the computation F.

The three blocks compute the functions:{ } { }{ } { }
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The connections of layers and external inputs/outputs impose these restrictions:
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Now we have:
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The output can also be written as a function of input and network state only:{ }))()1(()1(()( QQQQ H[W�H[W��H[W�H[W uByAFByAFy +-+-= (A.13)

The BFN recurrent network realizes a different function than the RMLP (equation 2.19). The
difference is underlined in the above BFN equation. The above equation actually has only one
feedback loop that goes to the two blocks N1 and N2.
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APPENDIX B - LEARNING ALGORITHMS

B.1  Derivation of the BPTT algorithm for FRNN by unfolding
the network in time

The derivation is based upon the unfolded network N R
* as defined in equations 3.9 in section

3.4. The gradient was decomposed in equation 3.11, repeated here for convenience:
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Now the expression for the partial derivatives �E(n0,Q)/�wij(P) will be written down. Just like
for any feedforward network, we can write for network NR
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For easier notation, the following definitions and relations are introduced first:
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Now equation 3.7 can be written (using equations 3.9 and d i(.)) as:
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Because the weights wij(P) not only influence the output yi(P) but also future values of y(.)
and thereby the cost function E(n0,Q), the expression for ei(P) is split up into two parts. The first
part represents the explicit influence of the current outputs y i(P) on the cost function. The
second part accounts for the implicit influence of y i(P) on the cost function through future
values of yi(.) (which will depend on current output values y i(P) because of the recurrent
connections).

To be able to split the single partial derivative e i(P) into two parts, a bit of new notation must
be introduced. Let yi

*(P) denote a new variable with values y i
*(P) = yi(P) for all P=n0…Q andL=1…N. Then the following expression denotes the explicit influence of the outputs y i(P) on the

cost function:
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The implicit influence is ‘lost’ because the new variable y i
*(.) is not part of the network

dynamics (equations 3.9). Next, the expression for the implicit influence of the outputs on the
cost function is needed. Any such influence is exercised by means of the ‘next’ neuron outputs
yi(P+1) so the expression can be decomposed into a partial derivative of E(n 0,Q) with respect to
the elements of the output vector y(P+1):
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The expression for ei(P) now becomes the sum of both the explicit and implicit terms. In the
following equation the sum is calculated and all partial derivatives are substituted with the
appropriate definitions from equations 3.25. The partial derivative �s�(P+1)/�yi(P) is the weight
w�i(P+1) so we can write:
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Because outputs at times P > Q do not influence the cost function E(n0,Q), it follows that the
partial derivative expression ei(P) must be zero (by definition) for P=Q+1. So for P=Q equation
3.32 becomes ei(P)=ei(P). The weight copies wij(P) will also be replaced by the original
weights wij from recurrent network NR. The result is the recursive relation:
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The weight adaptation at time Q can now be written, using equations 2.28, 3.26 as:
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The values of di(.) required for the adaptation can be recursively computed using equation
3.29a,b in a so-called single EDFNZDUG�SDVV. The following IRUZDUG�SDVV� is the use of equation
3.30 to calculate the weight updates.

To obtain zj(n0) initial conditions of the delay elements are set zero, y j(n0-1) = 0.

B.2  Derivation of the RTRL algorithm for FRNN using the
ordered derivative

The RTRL algorithm can be derived using the ordered derivative. This method was also used in
[Bengio, 1996], but the following derivation is a bit more clear and shows exactly when chain
rules are applied.

The weight update can be calculated using the gradient (equal to equation 3.33):
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�-=D + )()( h (B.10)

The ordered derivative is used, because all indirect influence of w kl on the error measure has to
be taken into account. In the following derivation, the second chain rule for ordered derivatives
will be frequently used. Because the parameters wkl of neuron N can only affect the error
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measure indirectly through the outputs yi(Q) of all other neurons (L=1..N), the second chain rule
can be applied as follows:
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Applying the second chain rule again for the last term in the above equation
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Again the second chain rule can be applied for the last term in the above equation. This time
we use the fact that si(Q) only depends on the weight wkl directly and on the extended input
vector z(Q) indirectly.
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where dik denotes the Kronecker delta function.
The difference between the standard approach and the ordered derivative approach can be seen

clearly in the last equation. The first term in the above equation, which is:
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has its own notation. Opposed to this, the same term in the (standard approach) equation 3.36
can not be written using a derivative notation but results directly from the application of the
chain rule for partial derivatives. This equation is repeated here for convenience:
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The term corresponding to 2.11 is underlined. The fact that using ordered derivatives allows for
an easier notation of the algorithm, is the reason it is used for deriving RTRL for modular
networks in subsection 3.5.3. It allows to notate the term 2.11 without having to fill in all the
details of this expression right away, i.e. it can be left unspecified until the moment that
choosing a specific neural network allows further development of the term.

Substituting the result 4.4 in equation 4.3, a recursive equation is obtained for calculating the
ordered derivatives �+yi(P) /�wkl:
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Using these results in equation 4.2 provides the ordered derivative needed in 3.46 for calculating
the weight update at time Q. The above equation is identical to equation 3.38 that was derived
using the standard partial derivative.

B.3  The Matlab/Elman learning algorithm for RNN

The Matlab Neural Network Toolbox (NNet) version 3.0 can model and train several neural
network structures. One class of network structures is based on static feedforward networks,
with delayed connections added to provide for dynamic networks (both time-delay networks and
recurrent networks). These network architectures may have arbitrary connections between layers
with or without a delay (of an arbitrary number of time steps). Recurrent connections from a
layer to the layer itself, or from a layer to a previous layer, must have a minimum delay of one.

For each training function (for example standard gradient descent with backpropagation) a
single algorithm is used in the toolbox to train all possible network architectures including
standard feedforward networks, time delay networks and recurrent networks.

The question arises what learning algorithm is used to train the large variety of possible
networks. The algorithm used in the NNet toolbox is called ‘Elman backpropagation’. The
documentation did not provide more information so the Matlab source code for the standard
gradient descent/backpropagation learning algorithm (WUDLQJG) was examined.

Here the Elman algorithm will be examined further for the special case of a FRNN.
Relation with the RTRL algorithm
In the Elman algorithm at every time step the instantaneous error measure E(Q) is used, not the
total error over the training sequence ETOTAL(n0,Q). The computation of gradients is done in a
single forward pass over all time steps. For every time step, only information of the current and
previous time step are used to compute the gradients. The computed gradients are used to update
the weights at the end of an epoch. In an epoch, all training data is presented to the network for
all time steps.

These properties make the algorithm an HSRFKZLVH� UHDO�WLPH� learning algorithm like
epochwise RTRL (see section 3.2). So the Matlab/Elman algorithm can be conveniently
compared with the epochwise RTRL algorithm.
Comparison with the RTRL algorithm
The Matlab algorithm can be developed in the same way as the RTRL algorithm, using the
instantaneous error measure E(Q). So both derivations are exactly the same up to a certain point,
so this first part of the derivation is not repeated here. See section 3.4 for the derivation of the
RTRL algorithm for FRNN. Recall the weight update can be calculated as (equation 3.43)
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where the variable p obeys the recursive relation (equation 3.42):
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The Matlab algorithm calculates both the above equations for every Q, but the following
approximation is made for the LQQHU�term p in the above equation:
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In this approximation all terms pkl
i(Q-2) have been set to zero. By removing the Kronecker

delta function dik the result is:

ÔÓ
ÔÒ
Ñ

�
=-¼- �

-�
=-

kifor 0

kifor )1())1((')1(
)1( Q]QVIZ

Q\
Q ON

NO

N
N
NOp (B.20)

This approximation simplifies the weight update equation 2.5:[ ][ ])()1())1(('))(('
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$VVXPLQJ�LQGHSHQGHQW�ZHLJKWV�RYHU�WLPH
Note that performing the approximation is equivalent to ‘suddenly assuming’ that all weights at
all times are independent variables wil(Q). This assumption would lead to the following
expression for the partial derivative:
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This expression is equal to the approximation in equation 2.6, so the approximation corresponds
to the independent weights assumption.
The Matlab Elman algorithm

1. set the initial epoch to 1 ; set the initial weights
2. initialize the network (default values of zero but they can be chosen by the user)
3. operate the network for the epoch (times Q=n0…n1).

calculate pkl
i(Q) for all L,N,O and Q using the following equation[ ])()1())1(('))((')( Q]Q]QVIZQVIQ OLNONLNL

L
NO dp +-¼-¼= (B.23)

4. use the values pkl
i(Q) and the error ei(Q) to calculate the weight update for all Q:
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5. Update all weights wkl:
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6. Test if a stopping criterium has been reached.
7. Increase epoch and go back to step 2

MATLAB routines used in network training
The m-files Matlab uses to train a network (standard gradient descent) are:

- traingd.m ; contains the toplevel routine to train the network
- calcgx.m ; is called to calculate the gradients. This script only calls calcgrad.m.
- calcgrad.m ; performs the gradient calculations.

These files were examined to obtain information about the Matlab learning algorithm for
recurrent neural networks.
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APPENDIX C - CLASSIFICATION WITH RECURRENT NEURAL
NETWORKS

C.1  Proof of MAP classification capability

Here it will be shown that state-space neural networks are capable of MAP classification of a
data sequence. Comments on this proof will be given at the end.
Definitions
In the following discussion, u(Q) is defined as the neural network input vector of size M, and
y(Q) is the output vector of size L. More definitions on MAP classification were given in section
4.2.
MAP Classification by static neural networks
Summarizing the MAP classification capabilities for static networks, a static network N 0 can
perform the MAP classification function of a single input vector

))(( Q3 L uw (C.1)

Using�N�previous inputs, grouped in an extended input vector U k(Q) of size k*M, as the input of
a bigger static neural network the same argument applies and MAP classification of a sequence
of length�N is possible by a static network Nk:

))(),...,(())(( NQQSQS LNL -= uuU ww (C.2)

MAP classification of sequences by recurrent state-space neural networks
Now the classification possibilities of recurrent state-space neural networks will be looked at.
Define the recurrent network R1 with two modules, F and G.

When the size of the state vector is chosen equal to that of the input vector and the following
trivial function for network F is used:

)())(),(()1( QQQQ uuxFx ==+ (C.3)

the RNN module G effectively has both u(Q) and u(Q-1) as input at each time Q :
))(),1(())(),(()( QQQQQ uxGuxGy -== (C.4)

so it can realize the MAP classification

))1(),(( -QQ3 L uuw (C.5)

of a sequence of length 2. The network R1 can therefore classify equivalently to static network
N1, which can classify a longer sequence than static network N0.

This argument can be extended: now define a recurrent network Rk. In general, choosing a
state vector of size N*M, the state vector can hold at each time Q:
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If the function F is now chosen to perform the following function that merely ‘shifts’ the state
vector and adds a new input u(Q), such that a memory of�N past inputs can be kept:
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then the static module G of network Rk can perform MAP classification of a sequence of N+1
input vectors:

))(),...,(())(),(())(),(()( NQQ3QQ3QQ*Q\ LL -=== uuuxux ww  (C.8)

It is now proven that a recurrent neural network Rk constructed this way is capable of MAP
classification of a sequence:

))(),...,(( NQQ3 L -uuw (C.9)

Comments on the proof
Recurrent neural networks are capable of MAP classification. The above argumentation is used
by [Santini e.a., 1995a] to prove that a RNN can be trained to be a MAP classifier of sequences.
Summarizing: a large state vector is constructed such that it holds all relevant past input samples
needed for classification and then a static neural network G module can use this information to
perform a MAP sequence classification.

The module G of network Rk receives exactly the same input as the static network Nk defined
earlier, and has to compute exactly the same function as network Nk. So in this case, the
recurrent network is just a redundant and cumbersome implementation of the static network Nk.

Therefore in practice the use of such a proof is very limited, because the proof also points out
that an equivalent static neural network Nk is a much simpler structure that can perform the
same classification. As a rationale for using recurrent networks for sequence classification this
proof is not useful.

Also, the value of N is fixed by choosing the recurrent network structure. This contradicts with
the supposed advantage of recurrent networks to classify variable length sequences.
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APPENDIX D - TIMIT SPEECH DATABASE

D.1  Phoneme definitions

The following information is used from [Janssen, 1998]. All sentences in the TIMIT-database
are labeled with a set of 62 possible phonetic labels, according to the ASCII CMU/ARPAbet
representation of the standard International Phonetic Association (IPA) symbol.

Phone Example Phone Example Phone Example
/iy/ beat /er/ bird /z/ zoo
/ih/ bit /axr/ diner /zh/ measure
/eh/ bet /el/ bottle /v/ very
/ae/ bat /em/ yes’em /f/ fief
/ux/ beauty /en/ button /th/ thief
/ix/ roses /eng/ Washington /s/ sis
/ax/ the /m/ mom /sh/ shoe
/ah/ butt /n/ non /hh/ hay
/uw/ boot /ng/ sing /hv/ Leheigh
/uh/ book /ch/ church /pcl/ (p closure)
/ao/ bought /jh/ judge /tcl/ (t closure)
/aa/ cot /dh/ they /kcl/ (k closure)
/ey/ bait /b/ bob /qcl/ (q closure)
/ay/ bite /d/ dad /bcl/ (b closure)
/oy/ boy /dx/ butter /dcl/ (d closure)
/aw/ about /nx/ (flapped n) /gcl/ (g closure)
/ow/ boat /g/ gag /epi/ (epin. clos.)
/l/ led /p/ pop /h#/ (begin sil)
/r/ red /t/ tot /#h/ (end sil)
/y/ yet /k/ kick /pau/ (betw. sil)
/w/ wet /q/ (glot. stop)

7DEOH�'����7,0,7�SKRQHPHV
Corrections
During work with the Timit database it was found that one more phoneme label existed that was
not listed. This is the /ax-h/ or /axh/ phoneme. So there are 63 phoneme labels.
Phoneme reduction schemes
Some of the phonemes in this table can not be distinguished without knowing the neighboring
phonemes. For example all the phonemes /pcl/, /tcl/, /kcl/ and /qcl/ are in fact silence but are
labeled this way because the phones /p/, /t/, /k/ or /q/ are preceded by those phones. To allow
single-phoneme recognition, the following simplifications are made:

Old New Old New Old New
/dx/ /d/ /eng/ /ng/ /bcl/ /vcl/
/ux/ /uw/ /hv/ /hh/ /dcl/ /vcl/
/el/ /l/ /pcl/ /cl/ /gcl/ /vcl/
/axr/ /er/ /tcl/ /cl/ /h#/ /sil/
/em/ /m/ /kcl/ /cl/ /#h/ /sil/
/en/ /n/ /qcl/ /cl/ /pau/ /sil/
/nx/ /n/ /q/ /cl/
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7DEOH�'����6XEVWLWXWLRQV
Corrections
According to the information used, this reduces the number of phonemes from 62 to 42. But one
new label /vcl/ is added, so this calculation is not entirely correct. The reduced number of
phonemes is 63 - 20 + 1 = 44.
Second reduction scheme
There is a second reduction scheme that reduces the number of phonemes to 36 (this number
will probably not be correct, like the preceding phoneme counts). This scheme is not shown
here. It may be found in other reports.

D.2  The Timit tools toolbox

The Matlab functions that were available (from [Janssen, 1998] and others) to handle the Timit
database data, were collected in the Timit_Tools toolbox [Dijk, 1999S]. The following functions
are provided:

readph Read phonemes from a Timit *.phn file
reads Reads a Timit sampled sound wave *.wav file (Timit uses a custom NIST

Sphere-headered wav format)
readsents Read one or more sentence(s) together with phonemes from one or more

speaker(s) in one go.
timit_test1 Demo that uses above functions.
timit_test2 Demo of using UHDGVHQWV.
Warning: preliminary version
There were some errors found in the UHDGSK� function in the phoneme reduction schemes and
they were inconsistent with the tables given in section 4.1.7. A careful look at these reduction
schemes is needed to verify that they are correct. The phonemes used in this report (non-
stationary vowels only) are not influenced by the reduction schemes and by the possible errors
therein. So the Timit_Tools toolbox described here should be considered a preliminary release.

D.3  Data used for the phoneme recognition experiment

The speakers/sentences used for the phoneme recognition experiment (see section 5.7)  are
shown here. The following Matlab code is used to load the sentences (five male speakers, ten
sentences per speaker):

timpath=’m:\timit\timit\train’ ;
%select dialect region
speakerpath=’dr1’;
%sample info
fs=16000; bits=16;
fullpath = [timpath ’\’ speakerpath] ;
% make an array of all 10 sentences per speaker.
speakers={’mdac0’,’mcpm0’,’mdpk0’,’medr0’,’mgrl0’};
sent{1}={’sa1’,’sa2’,’si1261’,’si1837’,’si631’,’sx181’,’sx271’,’sx361’,’sx451’,’sx91’};
sent{2}={’sa1’,’sa2’,’si1194’,’si1824’,’si564’,’sx114’,’sx204’,’sx24’,’sx294’,’sx384’};
sent{3}={’sa1’,’sa2’,’si1053’,’si1683’,’si552’,’sx153’,’sx243’,’sx333’,’sx423’,’sx63’};
sent{4}={’sa1’,’sa2’,’si1374’,’si2004’,’si744’,’sx114’,’sx204’,’sx24’,’sx294’,’sx384’};
sent{5}={’sa1’,’sa2’,’si1497’,’si2127’,’si867’,’sx147’,’sx237’,’sx327’,’sx417’,’sx57’};
% load files
[mstart_end,mph,first,last,y]=readsents(fullpath,speakers,sent,0,2,1);
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APPENDIX E - THE MODNET TOOLBOX

The Matlab toolbox that was developed to train and simulate (modular) state-space neural
networks is described in this appendix. The toolbox is called the 0RG1HW�toolbox [Dijk, 1999S].
The state-space neural network model was introduced in subsection 2.2.1 and discussed in a
modular neural network context in subsection 3.5.1. The modular description was used to
develop training algorithms and as a guideline to develop the Matlab code. The motivation for
this approach was given in subsection 3.8.2.

This appendix will give an overview of the ModNet toolbox (in 2.2.3) and will show the
implementation of the algorithms in Matlab pseudo-code (in 3.6.1). Pseudo-code means that
only the most important parts of the basic algorithm are shown so that the code can be easily
understood. The code shown therefore does not really work in Matlab. For the full code, see the
ModNet toolbox m-files. Some verification experiments that were done verify the correctness of
some aspects of the training algorithms, are described in section 2.2.4.

E.1  ModNet toolbox overview

This section aims to provide an overview of the ModNet toolbox. It will give:
- an overview of supported neural network structures (3.6.2) ;
- a list of toolbox functions (1) ;
- a description of the initialization functions (5.3.5) ;
- a description of the training functions (2.4.1) ;
- a description of the interfacing functions (2.4.2) ;
- a description of other functions (2.3).

E.1.1  Overview of supported neural network structures

The toolbox currently supports the state-space neural network (and its subtypes), with any one-
layer or two-layer perceptron inside each module. (This is easily extendable to N-layer
networks.) By pruning and/or fixing connections, the state-space Simple Recurrent Network
(SRN) and the type 2 FRNN (and its subtypes) can be trained and simulated.

By choosing one-layer networks for both modules the partially recurrent network (PRN) is
obtained.

E.1.2  Functions list

The toolbox provides the following functions.
Network Initialization functions
 initmodnet  - initialize a state-space neural network
 initsrn     - initialize a state-space Simple Recurrent Network (SRN)
 initfrnn    - initialize a type 2 Fully Recurrent Neural Network (FRNN)
Network training functions
 trainmodnet - train a modular neural network (several algorithms)
Interfacing functions to other Neural Network toolboxes
 modnet2nnt  - convert ModNet training set to NNT 3.0 format/FIR
 neural network toolbox format
 nnt2modnet  - convert NNT 3.0/FIR neural network toolbox training
 set to ModNet format
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Documentation functions
 modnet_help - explains data structures used
 modnet_rev  - shows revision history
Demo functions
 modnet_demo1 - trains several networks on a linear system identification

task.
 modnet_demo2 - use a state-space network for identification of the nonlinear Hénon

system.
For all functions more details about their use can be found in Matlab (by using KHOS
<function>). The toolbox uses specific functions and data structures from the Matlab NNet
toolbox version 3.0 [Matlab, 1997S]. Other versions of the NNet toolbox may not work.

A global overview of the capabilities of all the functions is given in the remainder of this
section.

E.1.3  Initialization functions

initmodnet
Initializes a state-space neural network. The two static modules should be constructed by the
user, using the standard NNet toolbox commands. The weights of both modules are initialized in
this function, using the NNet toolbox LQLW�command.
initsrn
Initializes a state-space SRN. The only difference from a true state-space neural network is that
the feedback weight matrix (from module 1 outputs to module 1 inputs) is forced to be diagonal.
(In Matlab terms: the feedback weight matrix is the left part of size NS-by-NS of the input
weights matrix of module 1 net1.IW{1}, with NS the state vector size.) The off-diagonal
weights that were first set zero are NHSW� ]HUR� by using the local learning rate feature of the
ModNet toolbox.
initfrnn
Initializes a type 2 FRNN. The FRNN structure can be obtained out of a state-space network by
removing module 2 and using some or all of the module 1 outputs directly as external outputs.
The function initfrnn does in fact not remove the module 2, but makes it a linear ‘dummy’
module with an output vector equal to the input, y(Q)=u(Q). Using the local learning rate feature
all weights of the linear module 2 are fixed. Effectively, module 2 is now disabled. Module 1
now acts alone as a FRNN.

E.1.4  Network training

Modular neural networks are trained by the WUDLQPRGQHW�function.
Training algorithms
The following algorithms are implemented within WUDLQPRGQHW .
Matlab algorithm
identifier

Algorithm

rtrl Real-time Recurrent Learning (RTRL)
rtrl_epoch Epochwise RTRL
bptt_epoch Epochwise BPTT
bptt_vt Epochwise BPTT using the Virtual Targets (VT) approach (see subsection

3.6.1)

The Matlab implementation of these algorithms is shown in more detail in section 3.6.1.



143

Training functions
Every algorithm can make use of different training functions (not to be confused with the term
training function as in ‘the trainmodnet training function’). These functions modify the basic
training algorithm. The following training functions are provided:

Matlab training
function
identifier

Meaning

traingd Standard gradient descent
traingda traingd with adaptive learning rate
traingdm traingd with momentum learning
traingdx traingd with both adaptive learning rate and momentum learning
trainlm the Levenberg-Marquardt (LM) algorithm. This function actually modifies

the algorithm from ESWWBHSRFK to the separately implemented ESWWBOP.
Note that RTRL can not be used with LM, as noted in subsection 3.6.1.

These training functions have the same name as their NNet toolbox equivalents. One can issue
‘help <function>’ in Matlab to get an idea of the function.
Validation set
Besides the training set a validation set can be supplied to the algorithm. Training will stop
whenever the error on the validation set has reached a minimum. See the Matlab NNet toolbox
or subsection 5.5.4 for more information on validation sets.
Local learning rate feature
If the local learning rate feature is used, each weights can have its own unique learning rate
multiplier. During training, the update for each weight is first multiplied by this local learning
rate value before it is applied. This opens up the possibility of fixing weights (see subsection
2.2.3) by setting certain local learning rates to zero (then, the weights can not change value
anymore so they can not be trained). This weight fixing is used in the ModNet toolbox for
obtaining subsets of the state-space network, like the FRNN and the state-space SRN, out of the
full state-space network. This feature could also be used to obtain other custom neural network
structures (for an example see again subsection 2.2.3).
Weighted supervision feature
The toolbox can use the weighted supervision technique which was briefly explained in
subsection 4.3.3. To use weighted supervision, for every target matrix in the training set an
equally-sized supervision matrix must be supplied that assigns a weighting constant to each
corresponding scalar target value.

E.1.5  Interfacing functions

Two interfacing functions are provided to exchange training sets between the ModNet toolbox
and the Matlab NNet toolbox. Both the NNet matrix form of training sets and the cell-array
form are supported. See the NNet toolbox for more information about the matrix form (for static
networks only) and the cell-array form (for dynamic networks).

E.1.6  Other functions

Other functions provided are demos, documentation functions and utility functions. See the
ModNet documentation for more information.
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E.2  Implementation of the algorithms

The algorithms are computed by the routines FDOFBESWW�and FDOFBUWUO. These are shown in
subsections 1.1 and E.2.2 respectively.
The gradients for each static module are calculated in separate m-files, which are shown in
subsection 3.1.1.

E.2.1  BPTT

% calc_bptt
%
% ! NOTE !
% THIS IS THE MATLAB ‘PSEUDO-CODE�  LISTING. IT WILL BEST EXPLAIN THE
% WORKING AND IMPLEMENTATION OF THE RTRL ALGORITHM. FOR THE FULL
% SOURCE, SEE ModNet\calc_bptt.m !
%
% Inputs: P – input patterns in TS-by-Ninp matrix
% T – targets in TS-by-Noutp matrix
% weights – neural network weights
% modnet – modular network (excluding newest weights)
% Ai – initial state vector for network
% epoch – current epoch nr.
% <other_parameters> - see calc_bptt.m
% this includes numLayers, numInputs, numOutputs, numNeurons,
% numNeuronInputs, numWeights
% where
% Ninp  - number of external inputs to network
% Noutp – number of external outputs to network
%
%
function [modnet,perf,normGradient,weights] = calc_bptt(modnet,P,T,S,Ai,weights,tp,tc,
epoch)

f = modnet.f ;
%---Constants
module1 = 1;
module2 = 2;
% this defines the ext. inputs, which have the state vector as inputs
stateRange = [1 numOutputs(module1)] ;
lastLayer2 = numLayers(2);
lastLayer1 = numLayers(1);

%---get nr of time steps TS of example sequence
 [TS numExtInputs] = size(P);

%----Initialize the deltaw_* etc. to zeros
E1 = zeros( TS+1, numOutputs(1));
E2 = zeros( TS+1, numOutputs(2));
deltaw1 = zeros( 1, numWeights(1));
deltaw2 = zeros( 1, numWeights(2));
if (epoch > 1)
 deltaw_prev1 = modnet.system.deltaw1; % get previous deltaw out of modnet (if epoch>1)
 deltaw_prev2 = modnet.system.deltaw2;
else
 deltaw_prev1 = deltaw1; % epoch=1, so fill the deltaw_prev with
initial zeros
 deltaw_prev2 = deltaw2;
end
deltaw_total1= deltaw1;
deltaw_total2= deltaw2;

%---get weight vectors
w1  = weights{1};
w2  = weights{2};

%--------------SIMULATE NETWORK FOR ENTIRE SEQUENCE-------------
state = Ai;
for ts=1:TS
 P_now = P(ts,:)’;
 P_ext(ts,:) = [ state ; P_now ;1]’; % create an extended input vector
 [Y2{ts},state,Y1{ts},S1{ts},S2{ts},dYdS1{ts},dYdS2{ts}] = simmodnet_single_c(P_now,
state,w1,w2,f,<modnet_info>);
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% collect the last layer output (external output)
 Yout2(ts,:) = Y2{ts}(lastLayer2,1:numOutputs(2));
 Yout1(ts,:) = Y1{ts}(lastLayer1,1:numOutputs(1));
end
%--Error calculation: calculate error vector (from module 2 output and target)
E_ts = (T - Yout2) ;
%--------------END: SIMULATE NETWORK FOR ENTIRE SEQUENCE-------------

%-----------LOOP BACKWARDS OVER TIME-----------------
%--First for timestep TS, the ’trivial’ case
E2(TS,:) = - E_ts(TS,:) ;
%E1 is already zero for t=TS

%---Then loop back for other times < TS
for ts=[ (TS-1):-1: 1 ]

 %----Calc E2 for module 2
 E2(ts,:) =  -E_ts(ts,:) ;

 % Calculate dYdY11 and dYdY21
 dYdY11 = calc_dYdX(module1, w1, dYdS1{ts}, stateRange,<modnet_info>);
 dYdY21 = calc_dYdX(module2, w2, dYdS2{ts}, stateRange,<modnet_info>);

 %----Calc E1 for module 1
E1(ts,:) = E1(ts+1,1:numOutputs(module1)) * dYdY11 + ...

E2(ts+1,1:numOutputs(module2)) * dYdY21 ;
end %-----------END LOOP OVER TIME-----------------

% -----------------------------------------------
% ---- BPTT Algorithm
%
%--------------LOOP FORWARDS OVER TIME-------------
% to calc the weight adjustments deltaw using dYdW gradients
for ts=1:TS
 %----Calc dYdW and adaptations deltaw using E1/E2, of module 2..

dYdW2 = calc_dYdW(module2, w2, dYdS2{ts}, Y2{ts}, P_ext(ts,:)’, <modnet_info>);
 deltaw2 = deltaw2 - E2(ts,:) * dYdW2 ;
 % ..for module 1

dYdW1 = calc_dYdW(module1, w1, dYdS1{ts}, Y1{ts}, P_ext(ts,:)’, <modnet_info>);
 deltaw1 = deltaw1 - E1(ts,:) * dYdW1 ;
end
%-----------END LOOP OVER TIME-----------------

%----Return performance and norm of gradient
deltaw_total1 = deltaw1;
deltaw_total2 = deltaw2;
normGradient=sqrt(sum(sum(deltaw_total1.^2)) + sum(sum(deltaw_total2.^2)) );
normGradient1=sqrt(sum(sum(deltaw_total1.^2)) );
normGradient2=sqrt(sum(sum(deltaw_total2.^2)) );

%----Adapt weights module 1&2
w1 = w1 + lr * deltaw1 ;
w2 = w2 + lr * deltaw2 ;

%----Convert vector back to weight cell array, to return
weights{1} = w1;
weights{2} = w2;

% return calculated performance
perf=calc_perf3(modnet.performFcn, E_ts, Yout2, T );

% put delta into modnet
modnet.system.deltaw1 = deltaw1;
modnet.system.deltaw2 = deltaw2;

%end
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E.2.2 RTRL

% Calc_Rtrl – calculates RTRL algorithm for one example sequence
%
% ! NOTE !
% THIS IS THE MATLAB ‘PSEUDO-CODE�  LISTING. IT WILL BEST EXPLAIN THE
% WORKING AND IMPLEMENTATION OF THE RTRL ALGORITHM. FOR THE FULL
% SOURCE, SEE ModNet\calc_rtrl.m !
%
% Inputs: P – input patterns in TS-by-Ninp matrix
% T – targets in TS-by-Noutp matrix
% weights – neural network weights
% modnet – modular network (excluding newest weights)
% Ai – initial state vector for network
% epoch – current epoch nr.
% <other_parameters> - see calc_rtrl.m
% this includes numLayers, numInputs, numOutputs, numNeurons,
% numNeuronInputs, numWeights
% where
% Ninp  - number of external inputs to network
% Noutp – number of external outputs to network
%

function [perf,normGradient,weights] = calc_rtrl(modnet,P,T,Ai,weights,epoch,
<other_parameters>)

%----Constants
module1 = 1;
module2 = 2;

%----Init
f = modnet.f;
w1 = weights{1};
w2 = weights{2};
lastLayer2 = numLayers(2);
% this defines which module inputs have the state vector as inputs
stateRange = [1 numOutputs(module1)] ;

%----get nr of time steps TS of example sequence
 [TS numExtInputs] = size(P);

%----Initialize the deltaw_* etc. to zeroes
PI_prev11 = zeros( numOutputs(1), numWeights(1) ) ;
PI_prev21 = zeros( numOutputs(2), numWeights(1) ) ;
deltaw1 = zeros( 1, numWeights(1));
deltaw2 = zeros( 1, numWeights(2));
deltaw_prev1 = deltaw1;
deltaw_prev2 = deltaw2;
deltaw_total1= deltaw_prev1;
deltaw_total2= deltaw_prev2;

%---set init. state
state = Ai;

%--Begin algorithm:
%-----------LOOP OVER TIME-----------------
for ts=[1:TS]
 T_now  = T(ts,:);
 P_now  = P(ts,:)’; % this is the current input
 P_ext = [ state ; P_now ;1]; % create the extended input vector

 % ----Simulate network for 1 timestep with pattern P_now
 [Y2,state,Y1,S1,S2,dYdS1,dYdS2] = simmodnet_single_c(P_now,state,w1,w2,
<modnet_structure> );

 % ----calculate error vector (from module 2 output and target)
 E_now  = T_now - Y2(lastLayer2,1:numOutputs(2));
 E_ts(ts,:) = E_now ; % store errors over time in E_ts

%----Calculate dYdY11 and dYdW1 and PI11 for module 1
 dYdY11 = calc_dYdX(module1, w1, dYdS1, stateRange, <modnet_structure>);
 dYdW1 = calc_dYdW(module1, w1, dYdS1, Y1, P_ext, <modnet_structure>);

%---equation 3.78
PI11 = dYdW1 + dYdY11 * PI_prev11 ;
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%----Calc dYdY21, dYdW2, and PI21 for module 2
dYdY21 = calc_dYdX(module2, w2, dYdS2, stateRange, <modnet_structure>);
[dYdW2] = calc_dYdW(module2, w2, dYdS2, Y2, P_ext,<modnet_structure>);
%---equation 3.77

 PI21 = dYdY21 * PI_prev11 ;
 PI22 = dYdW2; % equation 4.7
 %---Calc adaptations module 1&2 , equation 3.80

deltaw1 = E_now * PI21  ;
deltaw2 = E_now * PI22 ;

 %----Adapt weights module 1/2
 w1 = w1 + lr * deltaw1 ;
 w2 = w2 + lr * deltaw2 ;

 %----Save some previous values of variables
 deltaw_prev1 = deltaw1;  % prev. weights of module 1
 deltaw_prev2 = deltaw2;
 PI_prev11 = PI11; % all previous PI values

end %-----------LOOP OVER TIME-----------------

%----Return performance and norm of gradient
perf =feval(modnet.performFcn, E_ts);
normGradient =sqrt(sum(sum(deltaw_total1.^2)) + sum(sum(deltaw_total2.^2)) );
normGradient1 =sqrt(sum(sum(deltaw_total1.^2)) );
normGradient2 =sqrt(sum(sum(deltaw_total2.^2)) );

%--return last state
Af=state;

%--return weights
weights = {w1 w2};

E.2.3  Gradient calculations routines (calc_dYdW, calc_dYdX)

calc_dYdW
The function calc_dYdW calculates the partial derivatives of the network outputs Y with respect
to all weights W.

function [dYdW] = calc_dYdW(module, w, dYdS, Y, P_ext, numNeurons, numNeuronInputs,
numOutputs, numLayerWeights, numLayers, numWeights)
%CALC_dYdW
%
weights1 = get_layerWeights( w, 1, numLayerWeights(module,:), numNeurons(module,:),
numNeuronInputs(module,:) );
if ( numLayers(module) >= 2 )
 weights2 = get_layerWeights( w, 2, numLayerWeights(module,:), numNeurons(module,:),
numNeuronInputs(module,:) );
end

dYdW = zeros( numOutputs(module) , numWeights(module) );

%---1 Layer network
if ( numLayers(module) == 1)
 lay=1; pos=1; Psize = numNeuronInputs(module,lay);
 for q = 1:numOutputs(module)
 dYdW(q, pos:pos+Psize-1 ) = dYdS(lay,q) .* P_ext(1:Psize)’ ;
 pos = pos + Psize ;
 end %q
end   %if numLayers

%---2 Layer network
if (numLayers(module) ==2)
 k=1;
 %----------------LOOP over all parameters of module ------------------------
 for lay = 1:numLayers(module)
 %----Layer 1 of 2
 if (lay==1)
 for neur = 1:numNeurons(module,lay)
 for neur_input = 1:numNeuronInputs(module,lay)
 for l=1:numOutputs(module)
 dYdW(l,k) = dYdS(lay+1,l) .* weights2(l,neur) ...
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 .* dYdS( lay, neur ) .* P_ext(neur_input );
 end %l
 k=k+1;
 end %neur_input
 end %neur
 %----Layer 2 of 2
 elseif (lay==2)

 for neur = 1:numNeurons(module,lay)
 for neur_input = 1:numNeuronInputs(module,lay)

dYdW(neur,k) = dYdS(lay,neur) * Y(1,neur_input) ;
 k=k+1;
 end %neur_input
 end %neur
 end %if lay==2  

end %lay
 %----------------END LOOP over all parameters of module ------------------------
end % if numLayers

calc_dYdX
The function calc_dYdX calculates the partial derivatives of the network outputs Y with respect
to all network inputs X.

function [dYdX] = calc_dYdX(module, w, dYdS, WhichInputs, numNeurons, numNeuronInputs,
numOutputs, numLayerWeights, numLayers, isBias)
%CALC_dYdX
%
lay1=1;
lay2=2;

weights1 = get_layerWeights( w, 1, numLayerWeights(module,:), numNeurons(module,:),
numNeuronInputs(module,:) );
if ( numLayers(module) >= 2 )
 weights2 = get_layerWeights( w, 2, numLayerWeights(module,:), numNeurons(module,:),
numNeuronInputs(module,:) );
end

%----Get from the WhichInputs argument: the start and end values of the range of module
% external inputs X for which dYdX has to be calculated
numStartInput = WhichInputs(1);
numEndInput = WhichInputs(2);
numInputs_X = numEndInput - numStartInput + 1;
numNeuronInputs_noBias = numNeuronInputs - isBias ;

% 1-LAYER NETWORK CASE
if numLayers(module) == 1
 for l=1:numOutputs(module)
 dYdX(l,1:numInputs_X) = dYdS(lay1,l) .* weights1(l,numStartInput:numEndInput) ;
 end

% 2-LAYER CASE
elseif numLayers(module) == 2
 for l=1:numOutputs(module)
 for q=1:numInputs_X

 dYdX(l,q) = sum ( weights2(l,1:numNeuronInputs_noBias(module,lay2)) ...
 .* dYdS(lay1,1:numNeurons(module,lay1) ) .* weights1(:, (q-1+numStartInput) )’ ) ...
 .* dYdS(lay2,l);
 end %q
 end % l
end %if numLayers..
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E.3  Verification experiments

The verification experiments described here are done to show correctness (by verification of
numerical results) of certain aspects of the ModNet algorithms. Some verification of the
algorithms is needed, because an error in the implementation of an algorithm can not always be
spotted on first sight.

Later when the verifications listed here were completed, it was found that the ILQLWH�GLIIHUHQFHV
method (see recommendations in chapter 6) is actually an easier way to test gradient calculation
routines.
Verification of the RTRL algorithm
In this experiment the intention was to verify the RTRL algorithm, for a simple linear network
(1-layer modules), against the RTRL algorithm for Partially Recurrent Networks (see subsection
2.2.4) contained in the REC toolbox [Janssen, 1998] for FRNN. Both network structures were
equal and the same initial weights were used. Equal results would show the new RTRL
algorithm is probably correct.

The numerical results however differed so RTRL calculations had to be done by hand for the
first three time steps. These matched with the RTRL calculations of the ModNet toolbox but not
with the calculations for the partially recurrent network in the REC toolbox.

The conclusion is the REC toolbox apparently contains an error. The ModNet RTRL
algorithm equals the hand-made calculations.
File: Exp_Validation\test_valid1

Verification of the gradient calculation routines against Matlab routines
The epochwise BPTT algorithm (bptt_epoch) was verified in this experiment against the ‘virtual
target’ BPTT algorithm (bptt_vt). The gradient calculations in the virtual target BPTT algorithm
are done by standard Matlab NNet routines, so this comparison can validate the gradient
calculations performed in the ModNet normal BPTT algorithm. Both algorithms were run with
identical initial weights and the numerical results of calculations were identical.

The identical numerical results imply that the gradient calculations are done equally to the
MATLAB toolbox, so this actually verifies the correct working of the gradient calculation
routine FDOFBG<G: which calculates all gradients �yij/�wkl. The verification was done for
several networks, having both 1-layer and 2-layer static networks and linear, tansig and logsig
neuron transfer functions.
File: Exp_Validation\test_valid2

Verification of the partial supervision option in BPTT/RTRL algorithms
In this experiment the partial supervision option (also called ‘weighted targets’ option) was
tested. See subsection 4.3.3. All targets were weighted equally with a factor 1 so in this case the
weighted targets option should produce identical results compared to the original algorithms,
which it did. Using the partial supervision with mixed 0/1 target weightings was also used in an
experiment.
File: Exp_Validation\test_valid3
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